Ars Combinatoria
ISSN 0381-7032 (print), 2817-5204 (online)
Ars Combinatoria is the oldest Canadian Journal of Combinatorics, established in 1976. The journal is dedicated to advancing the field of combinatorial mathematics through the publication of high-quality research papers. From 2024 onward, it publishes four volumes per year in March, June, September and December. Ars Combinatoria has gained recognition and visibility in the academic community and is indexed in renowned databases such as MathSciNet, Zentralblatt, and Scopus. The Scope of the journal includes Graph theory, Design theory, Extremal combinatorics, Enumeration, Algebraic combinatorics, Combinatorial optimization, Ramsey theory, Automorphism groups, Coding theory, Finite geometries, Chemical graph theory but not limited.
Information Menu
- Research article
- Full Text
- Ars Combinatoria
- Volume 053
- Pages: 249-256
- Published: 31/10/1999
For positive integers \(k \leq n\), the crown \(C_{n,k}\) is the graph with vertex set \(\{a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_n\}\) and edge set \(\{a_ib_j: 1 \leq j \leq n, j = i+1,i+2,\ldots,i+k \pmod{n}\}\). For any positive integer \(\lambda\), the multicrown \(\lambda C_{n,k}\) is the multiple graph obtained from the crown \(C_{n,k}\) by replacing each edge \(e\) by \(\lambda\) edges with the same end vertices as \(e\). A star \(S_l\) is the complete bipartite graph \(K_{1,k}\). If the edges of a graph \(G\) can be decomposed into subgraphs isomorphic to a graph \(H\), then we say that \(G\) has an \(H\)-decomposition. In this paper, we prove that \(\lambda C_{n,k}\) has an \(S_l\)-decomposition if and only if \(l \leq k\) and \(\lambda nk \equiv 0 \pmod{l}\). Thus, in particular, \(C_{n,k}\) has an \(S_l\)-decomposition if and only if \(l \leq k\) and \(nk \equiv 0 \pmod{l}\). As a consequence, we show that if \(n \geq 3, k < \frac{n}{2}\) then \(C_k^n\), the \(k\)-th power of the cycle \(C_n\), has an \(S_l\)-decomposition if and only if \(1 < k+1\) and \(nk \equiv 0 \pmod{1}\).
- Research article
- Full Text
- Ars Combinatoria
- Volume 053
- Pages: 239-247
- Published: 31/10/1999
A set \(X\) of vertices of a graph is said to be dependent if \(X\) is not an independent set. For the graph \(G\), let \(P_k(G)\) denote the set of dependent sets of cardinality \(k\).
In this paper, we show that if \(G\) is a connected graph on \(2n\) vertices where \(n \geq 3\), then \(|P_n(G)| \geq |P_{n+1}(G)|\). This study is motivated by a conjecture of Lih.
- Research article
- Full Text
- Ars Combinatoria
- Volume 053
- Pages: 225-237
- Published: 31/10/1999
The shares in a \((k,n)\) Shamir threshold scheme consist of \(n\) points on some polynomial of degree at most \(k-1\). If one or more of the shares are faulty, then the secret may not be reconstructed correctly. Supposing that at most \(\epsilon\) of the \(n\) shares are faulty, we show how a suitably chosen covering design can be used to compute the correct secret. We review known results on coverings of the desired type, and give some new constructions. We also consider a randomized algorithm for the same problem, and compare it with the deterministic algorithm obtained by using a particular class of coverings.
- Research article
- Full Text
- Ars Combinatoria
- Volume 053
- Pages: 219-224
- Published: 31/10/1999
A finite ordered set is upper levellable iff it has a diagram in which, for each element, all upper covers of the element are on the same horizontal level. In this note, we give a method for computing a canonical upper levelling, should one exist.
- Research article
- Full Text
- Ars Combinatoria
- Volume 053
- Pages: 209-218
- Published: 31/10/1999
- Research article
- Full Text
- Ars Combinatoria
- Volume 053
- Pages: 193-207
- Published: 31/10/1999
An \(n_3\)-configuration in the real projective plane is a configuration consisting of \(n\) points and \(n\) lines such that every point is on three lines and every line contains three points. Determining sets are used to construct drawings of arbitrary \(n_3\)-configurations in the plane, such that one line is represented as a circle. It is proved that the required determining set always exists, and that such a drawing is always possible. This is applied to the problem of deciding when a particular configuration is coordinatizable.
- Research article
- Full Text
- Ars Combinatoria
- Volume 053
- Pages: 187-191
- Published: 31/10/1999
- Research article
- Full Text
- Ars Combinatoria
- Volume 053
- Pages: 181-186
- Published: 31/10/1999
For a given graph \(G\), we fix \(s\), and partition the vertex set into \(s\) classes, so that any given class contains few edges. The result gives a partition \((U_1, U_2, \ldots, U_s)\), where \(e(U_i) \leq \frac{e(G)}{s^2} + 4s\sqrt{e(G)}\) for each \(1 \leq i \leq s\). The error term is compared to previous results for \(s = 2^P\) \({[6]}\), and to a result by Bollobás and Scott \({[1]}\).
- Research article
- Full Text
- Ars Combinatoria
- Volume 053
- Pages: 173-179
- Published: 31/10/1999
We associate codes with \(C(n,n,1)\) designs. The perfect \(C(n,n,1)\) designs obtained from perfect one-factorizations of \(K_n\) yield codes of dimension \(n-2\) over \(\mathbb{F}_2\) and \(n-1\) over \(\mathbb{F}_p\), for \(p\neq 2\). We also demonstrate a method of obtaining another \(C(n,n,1)\) design from a pair of isomorphic perfect \(C(n,n,1)\) designs and determine the dimensions of the resulting codes.
- Research article
- Full Text
- Ars Combinatoria
- Volume 053
- Pages: 161-172
- Published: 31/10/1999
In a previous work “Skolem labelled graphs” \({[4]}\) we defined the Skolem labelling of graphs, here we prove that the necessary conditions are sufficient for a Skolem or minimum hooked Skolem labelling of all \(k\)-windmills. A \(k\)-windmill is a tree with \(k\) leaves each lying on an edge-disjoint path of length \(m\) to the centre. These paths are called the vanes.