Ars Combinatoria

ISSN 0381-7032 (print), 2817-5204 (online)

Ars Combinatoria is the oldest Canadian Journal of Combinatorics, established in 1976. The journal is dedicated to advancing the field of combinatorial mathematics through the publication of high-quality research papers. From 2024 onward, it publishes four volumes per year in March, June, September and December. Ars Combinatoria has gained recognition and visibility in the academic community and is indexed in renowned databases such as MathSciNet, Zentralblatt, and Scopus. The Scope of the journal includes Graph theory, Design theory, Extremal combinatorics, Enumeration, Algebraic combinatorics, Combinatorial optimization, Ramsey theory, Automorphism groups, Coding theory, Finite geometries, Chemical graph theory but not limited.

Uri Blass1, Simon Litsyn1
1Tel-Aviv University, Department of Electrical Engineering — Systems, Ramat-Aviv 69978, Israel
Abstract:

We prove that the smallest covering code of length \(8\) and covering radius \(2\) has exactly \(12\) words. The proof is based on partial classification of even weight codewords, followed by a search for small sets of odd codewords covering the part of the space that has not been covered by the even subcode.

Noga Alon1, Eldar Fischer1
1Department of Mathematics Raymond and Beverly Sackler Faculty of Exact Sciences Tel Aviv University Tel Aviv, Israel
Abstract:

Alon and Yuster {[4]} have proven that if a fixed graph \(K\) on \(g\) vertices is \((h+1)\)-colorable, then any graph \(G\) with \(n\) vertices and minimum degree at least \(\frac{h}{h+1}n\) contains at least \((1-\epsilon)\frac{n}{g})\) vertex disjoint copies of \(K\), provided \(n>N(\epsilon)\). It is shown here that the required minimum degree of \(G\) for this result to follow is closer to \(\frac{h-1}{h }n\), provided \(K\) has a proper \((h+1)\)-coloring in which some of the colors occur rarely. A conjecture regarding the best possible result of this type is suggested.

Kathleen A.S.Quinn1
1Department of Pure Mathematics, The Open University, Walton Hall, Milton Keynes MK7 6AA
Abstract:

Let \(G\) be a finite group with a normal subgroup \(H\). We prove that if there exist a \((h, r;\lambda, H)\) difference matrix and a \((g/h, r;1, G/H)\) difference matrix, then there exists a \((g, r;\lambda, G)\) difference matrix. This shows in particular that if there exist \(r\) mutually orthogonal orthomorphisms of \(H\) and \(r\) mutually orthogonal orthomorphisms of \(G/H\), then there exist \(r\) mutually orthogonal orthomorphisms of \(G\). We also show that a dihedral group of order \(16\) admits at least \(3\) mutually orthogonal orthomorphisms.

Bolian Liu1, Zhou Bo1
1Department of Mathematics South China Normal University Guangzhou, 510631 P.R. of China
Abstract:

Let \(k\) and \(b\) be integers and \(k > 1\). A set \(S\) of integers is called \((k, b)\) linear-free (or \((k, b)\)-LF for short) if \(2 \in S\) implies \(kx + b \notin S\). Let \(F(n, k, b) = \max\{|A|: A \text{ is } (k, 0)\text{-LF and } A \subseteq [1, n]\}\), where \([1, n]\) denotes all integers between \(1\) and \(n\). A subset \(A\) of \([1, n]\) with \(|A| = F(n, k, b)\) is called a maximal \((k, b)\)-LF subset of \([1, n]\). In this paper, a recurrence relation for \(F(n, k, b)\) is obtained and a method to construct a maximal \((k, b)\)-LF subset of \([1, n]\) is given.

Katja Valentin1
1Mathematisches Institut, Arndtstr. 2, D-35392 Giefen, Katja.
Abstract:

This paper deals with a new kind of graph labeling similar to the well known harmonious, graceful, and elegant labelings. A polychrome labeling of a simple and connected graph \(G = (V, E)\) by an abelian group \(A\) is a bijective map from \(V\) onto \(A\) such that the induced edge labeling \(f^*(uv) = f(v) + f(w), uv \in E\), is injective. Polychrome labelings of a path and a cycle by a large class of abelian groups are designed, and the connection to the above mentioned labelings is shown. In addition, the author presents a conjecture which is similar to a famous conjecture of G. Ringel about graceful trees (see {[9]}).

Joél Puech1
1Département de Mathématiques , Bat. 425, Université de Paris-Sud, 91405 Orsay cedex, France.
Abstract:

A graph is well-covered if it has no isolated vertices and all the maximal independent sets have the same cardinality. If furthermore this cardinality is exactly half the number of vertices, the graph is called very well covered. Sankaranarayana in \({[5]}\) presented a certain subclass of well covered graphs (called Wan) and gave a characterization of this class which generalized the characterization of very well covered graphs given by Favaron \([2]\) . The purpose of this article is to generalize to this new subclass some results concerning the stability, domination, and irredundance parameters proved for very well covered graphs in \([2]\) .

S. Mishra1
1Stat/Math. Unit, Indian Statistical Institute, 203 B. T. Road, Calcutta 700 035, India.
Abstract:

Three new characterizations of matroids are presented.

MARINA MARTINOVA1
1DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ARCHITECTURE, CONSTRUCTION, AND GEODESY, Sorta, BULGARIA
Abstract:

A decomposition of a graph \(H\) is a family of subgraphs of \(H\) such that each edge of \(H\) is contained in exactly one member of the family. For a graph \(G\), a \(G\)-decomposition of the graph \(H\) is a decomposition of \(H\) into subgraphs isomorphic to \(G\). If \(H\) has a \(G\)-decomposition, \(H\) is said to be \(G\)-decomposable; this is denoted by \(H \rightarrow G\). In this paper, we prove by construction that the complete graph \(K_{24}\) is \(G\)-decomposable, where \(G\) is the complementary graph of the path \(P_5\).

Zhi-Hong Chen1, Kuang Ying-Qiang2, Hong-Jian Lai3
1Butler University, Indianapolis, IN 46208
2South China University of Technology, Guangzhou, P. R. China
3West Virginia University, Morgantown, WV 26506
Abstract:

A unified approach to prove former connectivity results of Tutte, Cunningham, Inukai, and Weinberg, Oxley, and Wagner.

Y.S. Liaw1
1Department of Mathematics University of Glasgow Glasgow G12 8QW Scotland
Abstract:

This paper deals with the existence of \({Z}\)-cyclic Room squares of order \(2v\) (or of side \(2v-1\)) whenever \(2v-1 =\Pi_{i=1}^{n}p^{\alpha_i}\), ( \(p_i=2^{m_i}b_i+1\geq 7\) are distinct primes, \(b_i\) are odd, \(b_i > 1\), and \(\alpha_i\) are positive integers, \(i = 1, 2, \ldots, n\)), and includes some further results involving Fermat primes.

E-mail Alert

Add your e-mail address to receive upcoming issues of Ars Combinatoria.

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;