Ars Combinatoria

ISSN 0381-7032 (print), 2817-5204 (online)

Ars Combinatoria is the oldest Canadian Journal of Combinatorics, established in 1976. The journal is dedicated to advancing the field of combinatorial mathematics through the publication of high-quality research papers. From 2024 onward, it publishes four volumes per year in March, June, September and December. Ars Combinatoria has gained recognition and visibility in the academic community and is indexed in renowned databases such as MathSciNet, Zentralblatt, and Scopus. The Scope of the journal includes Graph theory, Design theory, Extremal combinatorics, Enumeration, Algebraic combinatorics, Combinatorial optimization, Ramsey theory, Automorphism groups, Coding theory, Finite geometries, Chemical graph theory but not limited.

Gaetano Quattrocchi1
1 Dipartimento di Matematica Universita’ di Catania viale A. Doria 6 95125 Catania, Italy
Abstract:

For each admissible \(v\) we exhibit a \(\mathrm{H}(v, 3, 1)\) with a spanning set of minimum cardinality and a \(\mathrm{H}(v, 3, 1)\) with a scattering set of maximum cardinality.

Neville Robbins1
1Mathematics Department San Francisco State University San Francisco, CA 94132
Abstract:

Using the Jacobi triple product identity and the quintuple product identity, we obtain identities involving several partition functions.

G. Brinkmann1, E. Steffen2
1Fakultat fiir Mathematik Postfach 100131 33501 Bielefeld (Germany)
2 Fakultat fiir Mathematik Postfach 100131 33501 Bielefeld (Germany),
Abstract:

A snark is a simple, cyclically \(4\)-edge connected, cubic graph with girth at least \(5\) and chromatic index \(4\). We give a complete list of all snarks of order less than \(30\). Motivated by the long standing discussion on trivial snarks (i.e. snarks which are reducible), we also give a brief survey on different reduction methods for snarks. For all these reductions we give the complete numbers of irreducible snarks of order less than \(30\) and the number of nonisomorphic \(3\)-critical subgraphs of these graphs. The results are obtained with the aid of a computer.

S.Louis Hakimi 1, John Mitchem2, Edward Schmeichel 2
1 Department of Electrical and Computer Engineering University of California Davis, CA 95616
2Department of Mathematics and Computer Science San Jose State University San Jose, CA 95192
Abstract:

We give short proofs of theorems of Nash-Williams (on edge-partitioning a graph into acyclic subgraphs) and of Tutte (on edge-partitioning a graph into connected subgraphs). We also show that each theorem can be easily derived from the other.

Uri Blass1, Simon Litsyn1
1Tel-Aviv University Department of Electrical Engineering — Systems Ramat-Aviv 69978, Israel
Abstract:

We derive several new lower bounds on the size of ternary covering codes of lengths \(6\), \(7\) and \(8\) and with covering radii \(2\) or \(3\).

Olof Barr1
1Department of Mathematics UmedaUniversity S-901 87 Umea Sweden
Abstract:

We show that every complete graph \(K_n\), with an edge-colouring without monochromatic triangles, has a properly coloured Hamiltonian path.

C.Pandu Rangan1, K.R. Parthasarathy2, V. Prakash2
1 Department of Computer Science and Engineering
2 Department of Mathematics Indian Institute of Technology Madras 600 036 India
Abstract:

In this paper we prove some basic properties of the \(g\)-centroid of a graph defined through \(g\)-convexity. We also prove that finding the \(g\)-centroid of a graph is NP-hard by reducing the problem of finding the maximum clique size of \(G\) to the \(g\)-centroidal problem. We give an \(O(n^2)\) algorithm for finding the \(g\)-centroid for maximal outer planar graphs, an \(O(m + n\log n)\) time algorithm for split graphs and an \(O(m^2)\) algorithm for ptolemaic graphs. For split graphs and ptolemaic graphs we show that the \(g\)-centroid is in fact a complete subgraph.

MingChu Li1
1Department of Mathematics University of Toronto 100 St. George Street Toronto, Ontario M5S 1A1 Canada
Abstract:

In this paper, we show that if \(G\) is a connected \(SN2\)-locally connected claw-free graph with \(\delta(G) \geq 3\), which does not contain an induced subgraph \(H\) isomorphic to either \(G_1\) or \(G_2\) such that \(N_1(x,G)\) of every vertex \(x\) of degree \(4\) in \(H\) is disconnected, then every \(N_2\)-locally connected vertex of \(G\) is contained in a cycle of all possible lengths and so \(G\) is pancyclic. Moreover, \(G\) is vertex pancyclic if \(G\) is \(N_2\)-locally connected.

Dawn M.Jones1, Denny James Roehm2, Michelle Schultz1
1Western Michigan University
2Western Michigan University
Abstract:

A matching in a graph \(G\) is a set of independent edges and a maximal matching is a matching that is not properly contained in any other matching in \(G\). A maximum matching is a matching of maximum cardinality. The number of edges in a maximum matching is denoted by \(\beta_1(G)\); while the number of edges in a maximal matching of minimum cardinality is denoted by \(\beta^-_1(G)\). Several results concerning these parameters are established including a Nordhaus-Gaddum result for \(\beta^-_1(G)\). Finally, in order to compare the maximum matchings in a graph \(G\), a metric on the set of maximum matchings of \(G\) is defined and studied. Using this metric, we define a new graph \(M(G)\), called the matching graph of \(G\). Several graphs are shown to be matching graphs; however, it is shown that not all graphs are matching graphs.

D. Hanson1, C.O.M. Loten 1, B. Toft2
1Department of Mathematics and Statistics University of Regina Regina, Saskatchewan Canada, S4S 0A2
2 Institut for Matematik og Datalogi Odense Universitet DK-5230, Odense M, Denmark
Abstract:

In this paper we consider interval colourings — edge colourings of bipartite graphs in which the colours represented at each vertex form an interval of integers. These colourings, corresponding to certain types of timetables, are not always possible. In the present paper it is shown that if a bipartite graph with bipartition \((X,Y)\) has all vertices of \(X\) of the same degree \(d_X = 2\) and all vertices of \(Y\) of the same degree \(d_y\), then an interval colouring can always be established.

E-mail Alert

Add your e-mail address to receive upcoming issues of Ars Combinatoria.

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;