Ars Combinatoria

ISSN 0381-7032 (print), 2817-5204 (online)

Ars Combinatoria is the oldest Canadian Journal of Combinatorics, established in 1976. The journal is dedicated to advancing the field of combinatorial mathematics through the publication of high-quality research papers. From 2024 onward, it publishes four volumes per year in March, June, September and December. Ars Combinatoria has gained recognition and visibility in the academic community and is indexed in renowned databases such as MathSciNet, Zentralblatt, and Scopus. The Scope of the journal includes Graph theory, Design theory, Extremal combinatorics, Enumeration, Algebraic combinatorics, Combinatorial optimization, Ramsey theory, Automorphism groups, Coding theory, Finite geometries, Chemical graph theory but not limited.

David C.Fisher1, Sarah R.Beel1
1 University of Colorado at Denver, Denver, CO 80217-3864, U.S.A.
Abstract:

What is the 2-packing number of the \(1 \times m \times n\) complete grid graph? Fisher solved this for \(1 \times m \times n\) grids for all \(m\) and \(n\). We answer this for \(2 \times m \times n\) grids for all \(m\) and \(n\), and for \(3 \times 3 \times n\), \(3 \times 4 \times n\), \(3 \times 7 \times n\), \(4 \times 4 \times n\), and \(5 \times 5 \times n\) grids for all \(n\). Partial results are given for other sizes.

Yung C.Chen1, Chin-Mei Fu2
1Tonetex Enterprises Co. LTD. P.O. Box 67-1296, Taipei, Taiwan, Republic of China
2Department of Mathematics, Tamkang University Tamsui, Taipei Shien, Taiwan, Republic of China
Abstract:

A Pandiagonal magic square (PMS) of order \(n\) is a square matrix which is an arrangement of integers \(0, 1, \ldots, n^2-1\) such that the sums of each row, each column, and each extended diagonal are the same. In this paper, we use the Step method to construct a PMS of order \(n\) for each \(n > 3\) and \(n\) is not singly-even. We discuss how to enumerate the number of PMSs of order \(n\) constructed by the Step method, and we get the number of nonequivalent PMSs of order \(8\) with the top left cell \(0\) is \(4,176,000\) and the number of nonequivalent PMSs of order \(9\) with the top left cell \(0\) is \(1,492,992\).

Morimasa TSUCHIYA1,2
1 Department of mathematical Sciences, Tokai University Hiratsuka 259-12, JAPAN
2 Department of Mathematics, MIT Cambridge MA02139, USA
Abstract:

In this paper, we consider total clique covers and uniform intersection numbers on multifamilies. We determine the uniform intersection numbers of graphs in terms of total clique covers. From this result and some properties of intersection graphs on multifamilies, we determine the uniform intersection numbers of some families of graphs. We also deal with the \(NP\)-completeness of uniform intersection numbers.

Biagio Micale1, Mario Pennisi2
1 Department of Mathematics — University of Catania ~ Italy
2 Department of S.A. V.A. — University of Molise ~ Italy
Abstract:

An oriented triple system of order \(v\), denoted OTS\((v)\), is said to be \(d\)-cyclic if it admits an automorphism consisting of a single cycle of length \(d\) and \(v-d\) fixed points, \(d\geq 2\). In this paper, we give necessary and sufficient conditions for the existence of \(d\)-cyclic OTS\((v)\). We solve the analogous problem for directed triple systems.

Lane Clark1
1Department of Mathematics Southern Illinois University at Carbondale Carbondale, IL 62901
Abstract:

Let \(A_m(n, k)\) denote the number of permutations of \(\{1, \ldots, n\}\) with exactly \(k\) rises of size at least \(m\). We show that, for each positive integer \(m\), the \(A_m(n, k)\) are asymptotically normal.

Jianping Li1,2
1Institute of Math. and Departinent of Math.. Yunnan University Kunming 650091, Yunnan, P.R.China.
2L.R.L. URA 410 du CNRS. Bat.490, Université de Paris-Sud. 91405-Orsay, France.
Abstract:

Let \(G\) be a graph of order \(n\) and \( X\) a given vertex subset of \(G\). Define the parameters:
\(\alpha(V) = \max\{|S| \mid S \text{ is an independent set of vertices of the subgraph } G(X) \text{ in } G \text{ induced by } X\}\)
and
\(\sigma_k(X) = \min\{|\Sigma_{i=1}^{k}d(x_i)| \mid \{x_1,x_2,\ldots,x_k\} \text{ is an independent vertex set in } G[X]\}\)
A cycle \(C\) of \(G\) is called \(X\)-longest if no cycle of \(G\) contains more vertices of \(X\) than \(C\). A cycle \(C’\) of \(G\) is called \(X\)-dominating if all neighbors of each vertex of \(X\setminus V(C)\) are on \(C\). In particular, \(G\) is \(X\)-eyclable if \(G\) has an \(X\)-cycle, i.e., a cycle containing all vertices of \(X\). Our main result is as follows:
If \(G\) is \(1\)-tough and \(\sigma_3(X) \geq n\), then \(G\) has an \(X\)-longest cycle \(C\) such that \(C\) is an \(X\)-dominating cycle and \(|V(C) \cap X| \geq \min\{|X|. |X| + \frac{1}{3}\sigma_3(X) – \sigma(X)\}\), which extends the well-known results of D. Bauer et al. [2] in terms of \(X\)-cyclability. Finally, if \(G\) is \(2\)-tough and \(\sigma_3(X) \geq n\), then \(G\) is \(X\)-cyelable.

Brenton D.Gray1, Colin Ramsay2
1Centre for Combinatorics, Depts. of Computer Science The University of Queensland. nd.
2 Dept. of Mathematics, and of Mathematics,The University of Queensla
Abstract:

In 1992, Mahmoodian and Soltankhah conjectured that, for all \(0 \leq i \leq t\), a \((v, k, t)\) trade of volume \(2^{t+1} – 2^{t-i}\) exists. In this paper we prove this conjecture and, as a corollary, show that if \(s \geq (2t – 1)2^t\) then there exists a \((v, k, t)\) trade of volume \(s\).

Hendrik Van Maldeghem1
1 University of Ghent Department of Pure Mathematics and Computer Algebra Galglaan 2, 9000 Gent Belgium
Abstract:

We prove two new characterization theorems for finite Moufang polygons, one purely combinatorial, another group-theoretical. Both follow from a result of Andries Brouwer on the connectedness of the geometry opposite a flag in a finite generalized polygon.

C. Roos1, A. Snijders1, A.J.van Zanten1
1 Delft University of Technology Faculty of Technical Mathematics and Informatics Mekelweg 4 2628 CD Delft The Netherlands
Abstract:

Cyclonomial coefficients are defined as a generalization of binomial coefficients. It is proved that each natural number can be expressed, in a unique way, as the sum of cyclonomial coefficients, satisfying certain conditions. This cyclonomial number system generalizes the well-known binomial number system. It appears that this system is the appropriate number system to index the words of the lexicographically ordered code \(L^q(n, k)\). This code consists of all words of length \(n\) over an alphabet of \(q\) symbols, such that the sum of the digits is constant. It provides efficient algorithms for the conversion of such a codeword to its index, and vice versa.

A.V. Gagarin 1, LE. Zverovich1
1 Department of Mechanics and Mathematics Belarus State University Minsk 220050 Republic of Belarus
Abstract:

We investigate the connections between families of graphs closed under (induced) subgraphs and their forbidden (induced) subgraph characterizations. In particular, we discuss going from a forbidden subgraph characterization of a family \(\mathbb{P}\) to a forbidden induced subgraph characterization of the family of line graphs of members of \(\mathbb{P}\) in the most general case. The inverse problem is considered too.

E-mail Alert

Add your e-mail address to receive upcoming issues of Ars Combinatoria.

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;