Ars Combinatoria
ISSN 0381-7032 (print), 2817-5204 (online)
Ars Combinatoria is the oldest Canadian Journal of Combinatorics, established in 1976. The journal is dedicated to advancing the field of combinatorial mathematics through the publication of high-quality research papers. From 2024 onward, it publishes four volumes per year in March, June, September and December. Ars Combinatoria has gained recognition and visibility in the academic community and is indexed in renowned databases such as MathSciNet, Zentralblatt, and Scopus. The Scope of the journal includes Graph theory, Design theory, Extremal combinatorics, Enumeration, Algebraic combinatorics, Combinatorial optimization, Ramsey theory, Automorphism groups, Coding theory, Finite geometries, Chemical graph theory but not limited.
Information Menu
- Research article
- Full Text
- Ars Combinatoria
- Volume 045
- Pages: 3-12
- Published: 30/04/1997
Let \(D\) be an asymmetric digraph and \(A\) a finite group. We give a formula for the characteristic polynomial of a cyclic \(A\)-cover of \(D\). This is a generalization of a formula for the characteristic polynomial of a regular covering of a graph. Furthermore, we discuss cyclic abelian covers of \(D\).
- Research article
- Full Text
- Ars Combinatoria
- Volume 044
- Pages: 283-286
- Published: 31/12/1996
Let \(n,s\) be positive integers, and let \(r = 1 + \frac{1}{s}\). In this note we prove that if the sequence \(\{a_n(r)\}_{n=1}^{\infty}\) satisfies \(ra_n(r)= \sum_{k=1}^{n}\binom{n}{k}a_k(r), n> 1\), then \(a_n(r) = na_1(r)\left[(n -1)! / {(s+1)}(log r)^n+{{1/r(s+1)}} \right]\). Moreover, we obtain a related combinatorial identity.
- Research article
- Full Text
- Ars Combinatoria
- Volume 044
- Pages: 273-281
- Published: 31/12/1996
A Mendelsohn triple system, \(MTS(v) = (X, \mathcal{B})\), is called self-converse if it and its converse \((X, \mathcal{B}^{-1})\) are isomorphic, where \(\mathcal{B}^{-1 } = \{\langle z,y,x\rangle; \langle x,y,z\rangle \in \mathcal{B}\}\). In this paper, the existence spectrum of self-converse \(MTS(v)\) is given, which is \(v \equiv 0\) or \(1 \pmod{3}\) and \(v \neq 6\).
- Research article
- Full Text
- Ars Combinatoria
- Volume 044
- Pages: 263-271
- Published: 31/12/1996
In this paper, we discuss the automorphism groups of circulant digraphs. Our main purpose is to determine the full automorphism groups of circulant digraphs of degree \(3\).
- Research article
- Full Text
- Ars Combinatoria
- Volume 044
- Pages: 241-262
- Published: 31/12/1996
The spectrum for the decomposition of \(\lambda K_v\) into \(3\)-perfect \(9\)-cycles is found for all \(\lambda > 1\). (The case \(\lambda = 1\) was dealt with in an earlier paper by the authors and Lindner.) The necessary conditions for the existence of a suitable decomposition turn out to be sufficient.
- Research article
- Full Text
- Ars Combinatoria
- Volume 044
- Pages: 229-239
- Published: 31/12/1996
A directed triple system of order \(v\), denoted by \(DTS(v)\), is called \((f,k)\)-rotational if it has an automorphism consisting of \(f\) fixed points and \(k\) cycles each of length \((v-f)/k\). In this paper, we obtain a necessary and sufficient condition for the existence of \((f,k)\)-rotational \(DTS(v)\) for any arbitrary positive integer \(k\).
- Research article
- Full Text
- Ars Combinatoria
- Volume 044
- Pages: 219-224
- Published: 31/12/1996
Let \( {R} = (r_1, r_2, \ldots, r_m)\) and \( {S} = (s_1, s_2, \ldots, s_n)\) be nonnegative integral vectors. Denote by \( {A}( {R}, {S})\) the class of \((0,1)\) matrices with row sum vector \( {R}\) and column sum vector \( {S}\). We study a generalization of invariant positions called locally invariant positions of a class \( {A}( {R}, {S})\). For a normalized class, locally invariant positions have in common with invariant positions the property that they lie above and to the left of some simple rook path through the set of positions.
- Research article
- Full Text
- Ars Combinatoria
- Volume 044
- Pages: 205-217
- Published: 31/12/1996
This paper examines the numbers of lattice paths of length \(n\) from the origin to integer points along the line \((a,b,c,d) + t(1,-1,1,-1)\). These numbers form a sequence which this paper shows is log concave, and for sufficiently large values of \(n\), the location of the maximum of this sequence is shown. This paper also shows unimodality of such sequences for other lines provided that \(n\) is sufficiently large.
- Research article
- Full Text
- Ars Combinatoria
- Volume 044
- Pages: 193-203
- Published: 31/12/1996
A cover of a finite set \(N\) is a collection of subsets of \(N\) whose union is \(N\). We determine the number of such covers whose blocks all have distinct sizes. The cases of unordered and ordered blocks are each considered.