Rao Li1
1Dept. of Mathematical Sciences University of Memphis Memphis, TN38152 U.S.A.
Abstract:

A graph is called \(K_{1,r}\)-free if it does not contain \(K_{1,r}\) as an induced subgraph. In this paper we generalize a theorem of Markus for Hamiltonicity of \(2\)-connected \(K_{1,r}\)-free (\(r \geq 5\)) graphs and present a sufficient condition for \(1\)-tough \(K_{1,r}\)-free (\(r \geq 4\)) graphs to be Hamiltonian.

Asad Ali Ali1, William Staton1
1Department of Computer Science Department of Mathematics University of Mississippi
Abstract:

Minimum degree two implies the existence of a cycle. Minimum degree \(3\) implies the existence of a cycle with a chord. We investigate minimum degree conditions to force the existence of a cycle with \(k\) chords.

H. J. Broersma1, C. Hoede1
1Faculty of Mathematical Sciences University of Twente P.O. Box 217, 7500 AE Enschede, The Netherlands
Abstract:

Let \(T = (V, E)\) be a tree on \(|V| = n\) vertices. \(T\) is graceful if there exists a bijection \(f : V \to \{0,1,\dots, n-1\}\) such that \(\{|f(u) – f(v)| \mid uv \in E\} = \{1,2,\dots,n-1\}\). If, moreover, \(T\) contains a perfect matching \(M\) and \(f\) can be chosen in such a way that \(f(u) + f(v) = n-1\) for every edge \(uv \in M\) (implying that \(\{|f(u) – f(v)| \mid uv \in M\} = \{1,3,\dots,n-1\}\)), then \(T\) is called strongly graceful. We show that the well-known conjecture that all trees are graceful is equivalent to the conjecture that all trees containing a perfect matching are strongly graceful. We also give some applications of this result.

Suh-Ryung Kim1
1Department of Mathematics Kyung Hee University Seoul, Korea
Abstract:

Let \(D\) be an acyclic digraph. The competition graph of \(D\) has the same set of vertices as \(D\) and an edge between vertices \(u\) and \(v\) if and only if there is a vertex \(x\) in \(D\) such that \((u,x)\) and \((v,x)\) are arcs of \(D\). The competition-common enemy graph of \(D\) has the same set of vertices as \(D\) and an edge between vertices \(u\) and \(v\) if and only if there are vertices \(w\) and \(x\) in \(D\) such that \((w,u), (w,v), (u,x)\), and \((v,x)\) are arcs of \(D\). The competition number (respectively, double competition number) of a graph \(G\), denoted by \(k(G)\) (respectively, \(dk(G)\)), is the smallest number \(k\) such that \(G\) together with \(k\) isolated vertices is a competition graph (respectively, competition-common enemy graph) of an acyclic digraph.

It is known that \(dk(G) \leq k(G) + 1\) for any graph \(G\). In this paper, we give a sufficient condition under which a graph \(G\) satisfies \(dk(G) \leq k(G)\) and show that any connected triangle-free graph \(G\) with \(k(G) \geq 2\) satisfies that condition. We also give an upper bound for the double competition number of a connected triangle-free graph. Finally, we find an infinite family of graphs each member \(G\) of which satisfies \(k(G) = 2\) and \(dk(G) > k(G)\).

D.A. Preece1, B.J. Vowden1, N.C.K. Phillips2
1Institute of Mathematics and Statistics University of Kent at Canterbury Canterbury, Kent CT2 7NF, UK
2 Department of Computer Science Southern Illinois University Carbondale, Illinois USA 62901
Abstract:

A \(k \times v\) double Youden rectangle (DYR) is a type of balanced Graeco-Latin design where each Roman letter occurs exactly once in each of the \(k\) rows, where each Greek letter occurs exactly once in each of the \(v\) columns, and where each Roman letter is paired exactly once with each Greek letter. The other properties of a DYR are of balance, and indeed the structure of a DYR incorporates that of a symmetric balanced incomplete block design (SBIBD). Few general methods of construction of DYRs are known, and these cover only some of the sizes \(k \times v\) with \(k = p\) (odd) or \(p+1\), and \(v = 2p + 1\). Computer searches have however produced DYRs for those such sizes, \(p \leq 11\), for which the existence of a DYR was previously in doubt. The new DYRs have cyclic structures. A consolidated table of DYRs of sizes \(p \times (2p +1)\) and \((p +1) \times (2p +1)\) is provided for \(p \leq 11\); for each of several of the sizes, DYRs are given for different inherent SBIBDs.

Cornelis Hoede1
1Department of Applied Mathematics University of Twente P.O. Box 217 7500 AE Enschede, The Netherlands
Abstract:

Some sufficient conditions for non-Hamiltonicity of graphs are compared.

David A. Pike1
1Department of Discrete and Statistical Sciences Auburn University, Auburn, Alabama, USA. 36849-5307
Abstract:

Block-intersection graphs of Steiner triple systems are considered. We prove that the block-intersection graphs of non-isomorphic Steiner triple systems are themselves non-isomorphic. We also prove that each Steiner triple system of order at most \(15\) has a Hamilton decomposable block-intersection graph.

Stewart W. Neufeld1
1Department of Mathematics and Statistics University of Winnipeg Winnipeg, MB. R3B 2E9
Abstract:

A directed graph \(G\) is primitive if there exists a positive integer \(k\) such that for every pair \(u, v\) of vertices of \(G\) there is a walk from \(u\) to \(v\) of length \(k\). The least such \(k\) is called the exponent of \(G\). The exponent set \(E_n\) is the set of all integers \(k\) such that there is a primitive graph \(G\) on \(n\) vertices whose exponent is \(k\).

Terry A. McKee1
1Department of Mathematics & Statistics Wright State University, Dayton, Ohio 45435
Abstract:

A simple inequality involving the number of components in an arbitrary graph becomes an equality precisely when the graph is chordal. This leads to a mechanism by which any graph parameter, if always at least as large as the number of components, corresponds to a subfamily of chordal graphs. As an example, the domination number corresponds to the well-studied family of \(P_4, C_4\)-free graphs.

Keiichi Handa1
1Systems & Software Engineering Laboratory, Toshiba Corporation, 70, Yanagi-cho, Saiwai-ku, Kawasaki 210, Japan
Abstract:

In this paper, we will be concerned with graphs \(G\) satisfying: \(G\) is isometrically embeddable in a hypercube; \(|C(a,b)| = |C(b,a)|\) for every edge \([a,b]\) of \(G\). where \(C(a,b)\) is the set of vertices nearer to \(a\) than to \(b\). Some properties of such graphs are shown; in particular, it is shown that all such graphs \(G\) are \(3\)-connected if \(G\) has at least two edges and \(G\) is not a cycle.

E-mail Alert

Add your e-mail address to receive upcoming issues of Ars Combinatoria.

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;