Ars Combinatoria

ISSN 0381-7032 (print), 2817-5204 (online)

Ars Combinatoria is the oldest Canadian Journal of Combinatorics, established in 1976. The journal is dedicated to advancing the field of combinatorial mathematics through the publication of high-quality research papers. From 2024 onward, it publishes four volumes per year in March, June, September and December. Ars Combinatoria has gained recognition and visibility in the academic community and is indexed in renowned databases such as MathSciNet, Zentralblatt, and Scopus. The Scope of the journal includes Graph theory, Design theory, Extremal combinatorics, Enumeration, Algebraic combinatorics, Combinatorial optimization, Ramsey theory, Automorphism groups, Coding theory, Finite geometries, Chemical graph theory but not limited.

Kuo-Bing Huang1, Wen-Chung Huang1, Chia-Chin Hung1, Guei-Hua Wang1
1Department of Mathematics Soochow University Taipei, Taiwan, Republic of China.
Abstract:

An extended Mendelsohn triple system of order \(v\) with a idempotent element (EMTS(\(v, a\))) is a collection of cyclically ordered triples of the type \(\{x, y, z\}\), \(\{x, x, y\}\) or \(\{x, x, x\}\) chosen from a \(v\)-set, such that every ordered pair (not necessarily distinct) belongs to only one triple and there are \(a\) triples of the type \(\{x, x, x\}\). If such a design with parameters \(v\) and \(a\) exist, then they will have \(b_{v,a}\) blocks, where \(b_{v,a} = (v^2 + 2a)/3\). A necessary and sufficient condition for the existence of EMTS(\(v, 0\)) and EMTS(\(v, 1\)) are \(v \equiv 0\) (mod \(3\)) and \(v \not\equiv 0\) (mod \(3\)), respectively. In this paper, we have constructed two EMTS(\(v, 0\))’s such that the number of common triples is in the set \(\{0, 1, 2, \ldots, b_{v, 0} – 3, b_{v, 0}\}\), for \(v \equiv 0\) (mod \(3\)). Secondly, we have constructed two EMTS(\(v, 1\))’s such that the number of common triples is in the set \(\{0, 1, 2, \ldots, b_{v, 1} – 2, b_{v, 1}\}\), for \(v \not\equiv 0\) (mod \(3\)).

I. M. Wanless1
1Christ Church St Aldates, Oxford OX1 1DP, U-K.
Abstract:

A Latin square is \(N_e\) if it has no intercalates (Latin subsquares of order \(2\)). We correct results published in an earlier paper by McLeish, dealing with a construction for \(N_2\) Latin squares.

Hong Wang1
1Department of Mathematics The University of Idaho Moscow, ID 83844
Abstract:

In [13], we conjectured that if \(G = (V_1, V_2; E)\) is a bipartite graph with \(|V_1| = |V_2| = 2k\) and minimum degree at least \(k + 1\), then \(G\) contains \(k\) vertex-disjoint quadrilaterals. In this paper, we propose a more general conjecture: If \(G = (V_1, V_2; E)\) is a bipartite graph such that \(|V_1| = |V_2| = n \geq 2\) and \(\delta(G) \geq [n/2] + 1\), then for any bipartite graph \(H = (U_1, U_2; F)\) with \(|U_1| \leq n, |U_2| \leq n\) and \(\Delta(H) \leq 2, G\) contains a subgraph isomorphic to \(H\). To support this conjecture, we prove that if \(n = 2k + t\) with \(k \geq 0\) and \(t \geq 3, G\) contains \(k + 1\) vertex-disjoint cycles covering all the vertices of \(G\) such that \(k\) of them are quadrilaterals.

Siaw-Lynn Ng1, Peter R. Wild1
1Maths Department, Royal Holloway Egham, Surrey TW20 0EX, UK
Abstract:

In a finite projective plane, a \(k\)-arc \(\mathcal{K}\) covers a line \(l_0\) if every point on \(l_0\) lies on a secant of \(\mathcal{K}\). Such \(k\)-arcs arise from determining sets of elements for which no linear \((n, q, t)\)-perfect hash families exist [1], as well as from finding sets of points in \(\mathrm{AG}(2, q)\) which determine all directions [2]. This paper provides a lower bound on \(k\) and establishes exactly when the lower bound is attained. This paper also gives constructions of such \(k\)-arcs with \(k\) close to the lower bound.

Antoaneta Klobucar1
1Ekonomski fakultet HR-31000 Osijek Croatia
Abstract:

In this paper we determine the \(k\)-domination number \(\gamma_k\) of \(P_{2k+2} \times P_n\) and \(\lim_{{m,n} \to \infty} \frac{\Gamma_k(P_m \times P_n)}{mn}\).

Lutz Volkmann1
1Lehrstuhl II fiir Mathematik, RWTH Aachen, 52056 Aachen, Germany
Abstract:

A digraph obtained by replacing each edge of a complete \(n\)-partite graph by an arc or a pair of mutually opposite arcs is called a semi-complete \(n\)-partite digraph. An \(n\)-partite tournament is an orientation of a complete \(n\)-partite graph. In this paper we shall prove that a strongly connected semicomplete \(n\)-partite digraph with a longest directed cycle \(C\), contains a spanning strongly connected \(n\)-partite tournament which also has the longest directed cycle \(C\) with exception of a well determined family of semicomplete bipartite digraphs. This theorem shows that many well-known results on strongly connected \(n\)-partite tournaments are also valid for strongly connected semicomplete \(n\)-partite digraphs.

Himmet Can1, Lee Hawkins2
1 Department of Mathematics Faculty of Arts & Sciences Erciyes University 38039 Kayseri Turkey
2Department of Mathematics University of Wales Aberystwyth SY23 3BZ United Kingdom
Toru Kojima1, Kiyoshi Ando1
1Department of Computer Science and Information Mathematics The University of Electro-Communications 1-5-1 Chofugaoka, Chofu City, Tokyo 182-8585, Japan
Abstract:

Let \(k\) be a positive integer and let \(G\) be a graph. For two distinct vertices \(x, y \in V(G)\), the \(k\)-wide-distance \(d_k(x, y)\) between \(x\) and \(y\) is the minimum integer \(l\) such that there exist \(k\) vertex-disjoint \((x, y)\)-paths whose lengths are at most \(l\). We define \(d_k(x, x) = 0\). The \(k\)-wide-diameter \(d_k(G)\) of \(G\) is the maximum value of the \(k\)-wide-distance between two vertices of \(G\). In this paper we show that if \(G\) is a graph with \(d_k(G) \geq 2\) (\(k \geq 3\)), then there exists a cycle which contains specified \(k\) vertices and has length at most \(2(k – 3)(\operatorname{d_k}(G) – 1) + \max\{3d_k(G), \lfloor\frac{18d_k(G)-16}{5}\rfloor \}\).

Heather Gavlas1
1Department of Mathematics and Statistics Grand Valley State University Allendale, MI 49401
Abstract:

Let \(G_1\) and \(G_2\) be two graphs of the same size such that \(V(G_1) = V(G_2)\), and let \(H\) be a connected graph of order at least \(3\). The graphs \(G_1\) and \(G_2\) are \(H\)-adjacent if \(G_1\) and \(G_2\) contain copies \(H_1\) and \(H_2\) of \(H\), respectively, such that \(H_1\) and \(H_2\) share some but not all edges and \(G_2 = G_1 – E(H_1) + E(H_2)\). The graphs \(G_1\) and \(G_2\) are \(H\)-connected if \(G_1\) can be obtained from \(G_2\) by a sequence of \(H\)-adjacencies. The relation \(H\)-connectedness is an equivalence relation on the set of all graphs of a fixed order and fixed size. The resulting equivalence classes are investigated for various choices of the graph \(H\).

I. Pelayo1, C. Balbuena1, J. Gomez2
1Departament de Matematica Aplicada III
2Departament de Matematica Aplicada i Telematica Universitat Politécnica de Catalunya
Abstract:

A generalized \(p\)-cycle is a digraph whose set of vertices is partitioned in \(p\) parts that are cyclically ordered in such a way that the vertices in one part are adjacent only to vertices in the next part. In this work, we mainly show the two following types of conditions in order to find generalized \(p\)-cycles with maximum connectivity:

1. For a new given parameter \(\epsilon\), related to the number of short paths in \(G\), the diameter is small enough.

2. Given the diameter and the maximum degree, the number of vertices is large enough.

For the first problem it is shown that if \(D \leq 2\ell + p – 2\), then the connectivity is maximum. Similarly, if \(D \leq 2\ell + p – 1\), then the edge-connectivity is also maximum. For problem two an appropriate lower bound on the order, in terms of the maximum and minimum degree, the parameter \(\ell\) and the diameter is deduced to guarantee maximum connectivity.

E-mail Alert

Add your e-mail address to receive upcoming issues of Ars Combinatoria.

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;