Ars Combinatoria

ISSN 0381-7032 (print), 2817-5204 (online)

Ars Combinatoria is the oldest Canadian Journal of Combinatorics, established in 1976. The journal is dedicated to advancing the field of combinatorial mathematics through the publication of high-quality research papers. From 2024 onward, it publishes four volumes per year in March, June, September and December. Ars Combinatoria has gained recognition and visibility in the academic community and is indexed in renowned databases such as MathSciNet, Zentralblatt, and Scopus. The Scope of the journal includes Graph theory, Design theory, Extremal combinatorics, Enumeration, Algebraic combinatorics, Combinatorial optimization, Ramsey theory, Automorphism groups, Coding theory, Finite geometries, Chemical graph theory but not limited.

Jianping Li1, Ruqun Shen2, Feng Tian3
1Institute of Mathematics and Department of Mathematics Yunnan University, Kunming 650091, Yunnan, China
2Institute of Biophysics, Academia Sinica, Beijing 100101, China
3Institute of Systems Science, Academia Sinica, Beijing 100080, China
Abstract:

For a graph \(G = (V, E)\) and \(X \subseteq V(G)\), let \(\operatorname{dist}_G(u, v)\) be the distance between the vertices \(u\) and \(v\) in \(G\) and \(\sigma_3(X)\) denote the minimum value of the degree sum (in \(G\)) of any three pairwise non-adjacent vertices of \(X\). We obtain the main result: If \(G\) is a \(1\)-tough graph of order \(n\) and \(X \subseteq V(G)\) such that \(\sigma_3(X) \geq n\) and, for all \(x, y \in X\), \(\operatorname{dist}_G(x, y) = 2\) implies \(\max\{d(x), d(y)\} \geq \frac{n-4}{2}\), then \(G\) has a cycle \(C\) containing all vertices of \(X\). This result generalizes a result of Bauer, Broersma, and Veldiman.

Zhang Cheng-heng1
1Hebei Langfang Teachers’ College Hebei Langfang 065000 , China
Sanpei Kageyama1, Tsutomu Shimata2
1Department of Mathematics Faculty of School Education Hiroshima University Higashi-Hiroshima 739-8524 Japan
2Department of Mathematics Shudo Gakuen Hiroshima 730-0055 Japan
Abstract:

Some constructions of affine \((\alpha_1, \ldots, \alpha_n)\)-resolvable \((r, \lambda)\)-designs are discussed, by use of affine \(\alpha\)-resolvable balanced incomplete block designs or semi-regular group divisible designs. A structural property is also indicated.

Klaus Dohmen1
1Humboldt-Universitat zu Berlin Institut fiir Informatik Unter den Linden 6 D-10099 Berlin, Germany
Abstract:

We establish a connection between the principle of inclusion-exclusion and the union-closed sets conjecture. In particular, it is shown that every counterexample to the union-closed sets conjecture must satisfy an improved inclusion-exclusion identity.

William Pensaert1
1Department of Mathematics & Statistics University of Winnipeg Winnipeg, MB -RSB 2E9 CANADA
Abstract:

Broadcasting in a network is the process whereby information, initially held by one node, is disseminated to all nodes in the network. It is assumed that, in each unit of time, every vertex that has the information can send it to at most one of its neighbours that does not yet have the information. Furthermore, the networks considered here are of bounded (maximum) degree \(\Delta\), meaning that each node has at most \(\Delta\) neighbours. In this article, a new parameter, the average broadcast time, defined as the minimum mean time at which a node in the network first receives the information, is introduced. It is found that when the broadcast time is much greater than the maximum degree, the average broadcast time is (approximately) between one and two time units less than the total broadcast time if the maximum degree is at least three.

Allen G. Fuller1, Ronald J. Gould2
1Division OF NATURAL SCIENCES AND NURSING, GORDON COLLEGE, BARNESVILLE, GA 30204
2DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, EMorRY UNIVERSITY, AT- LANTA, GA 30322
Abstract:

The path spectrum, \(\operatorname{sp}(G)\), of a graph \(G\) is the set of all lengths of maximal paths in \(G\). The path spectrum is continuous if \(\operatorname{sp}(G) = \{\ell, \ell1, \dots, \ell\}\) for some \(\ell \leq m\). A graph whose path spectrum consists of a single element is called scent and is by definition continuous. In this paper, we determine when a \(\{K_{1, 3}, S\}\)-free graph has a continuous path spectrum where \(S\) is one of \(C_3, P_4, P_5, P_6, Z_1, Z_2, Z_3, N, B\), or \(W\).

Riste Skrekovski1
1Department of Mathematics University of Ljubljana Jadranska 19, 1111 Ljubljana Slovenia
Abstract:

A graph \(G\) is \((p, q, r)\)-choosable if for every list assignment \(L\) with \(|L(v)| \geq p\) for each \(v \in V(G)\) and \(|L(u) \cap L(v)| < p – r\) whenever \(u, v\) are adjacent vertices, \(G\) is \(q\)-tuple \(L\)-colorable. We give an alternative proof of \((4t, t, 3t)\)-choosability for the planar graphs and construct a triangle-free planar graph on \(119\) vertices which is not \((3, 1, 1)\)-choosable (and so neither \(3\)-choosable). We also propose some problems.

Maria Kwasnik1, Maciej Zwierzchowski2
1Institute of Mathematics University of Technology of Szczecin al. Piastéw 48/49 70-310 Szczecin poland
2Institute of Mathematics University of Technology of Szczecin al. Piastéw 48/49 70-310 Szczecin
Abstract:

We study the behaviour of two domination parameters: the split domination number \(\gamma_s(G)\) of a graph \(G\) and the maximal domination number \(\gamma_m(G)\) of \(G\) after the deletion of an edge from \(G\). The motivation of these problems comes from [2]. In [6] Vizing gave an upper bound for the size of a graph with a given domination number. Inspired by [5] we formulate Vizing type relation between \(|E(G)|, |V(G)|, \Delta(G)\) and \(\delta(G)\), where \(\Delta(G)\) (\(\delta(G)\)) denotes the maximum (minimum) degree of \(G\).

P. Horak1, S. Mohammed1, E. Bertram2
1Department of Mathematics, Kuwait University P.O.Box 5969, Safat 13060, Kuwait
2Department of Mathematics, University of Hawaii at Manoa Honolulu, HI, 96822, U.S.A.
Abstract:

A \(2\)-factor \(F\) of a bipartite graph \(G = (A, B; E)\), \(|A| = |B| = n\), is small if \(F\) comprises \(\lfloor \frac{n}{2}\rfloor\) cycles. A set \(\mathfrak{F}\) of small edge-disjoint \(2\)-factors of \(G\) is maximal if \(G – \mathfrak{F}\) does not contain a small \(2\)-factor. We study the spectrum of maximal sets of small \(2\)-factors.

Peter Che Bor Lam 1, Wai Chee Shiu1, Feng Sun2, Jianfang Wang3, Guiying Yan4
1Department of Mathematics Hong Kong Baptist University
2Rally International Inc. Forest Park, I] 60130, USA
3Institute of Applied Mathematics Chinese Academy of Sciences and Asia-Pacific Operational Research Center Beijing, China
4Institute of Applied Mathematics Chinese Academy of Sciences Beijing, China
Abstract:

The linear vertex-arboricity of a graph \(G\) is defined as the minimum number of subsets into which the vertex-set \(V(G)\) can be partitioned so that every subset induces a linear forest. In this paper, we give the upper and lower bounds for the sum and product of linear vertex-arboricity with independence number and with clique cover number, respectively. All of these bounds are sharp.

E-mail Alert

Add your e-mail address to receive upcoming issues of Ars Combinatoria.

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;