Ars Combinatoria

ISSN 0381-7032 (print), 2817-5204 (online)

Ars Combinatoria is the oldest Canadian Journal of Combinatorics, established in 1976. The journal is dedicated to advancing the field of combinatorial mathematics through the publication of high-quality research papers. From 2024 onward, it publishes four volumes per year in March, June, September and December. Ars Combinatoria has gained recognition and visibility in the academic community and is indexed in renowned databases such as MathSciNet, Zentralblatt, and Scopus. The Scope of the journal includes Graph theory, Design theory, Extremal combinatorics, Enumeration, Algebraic combinatorics, Combinatorial optimization, Ramsey theory, Automorphism groups, Coding theory, Finite geometries, Chemical graph theory but not limited.

Nazli Besharati1, J.B. Ebrahimi2, A. Azadi3
1Department of Mathematical Sciences, University of Mazandaran, Babolsar, I. R. Iran
2Ecole Polytechnique Federale de Lausanne (EPFL), Station 14, CH-1015 Lausanne, Switzerland
3Department of Mathematical Sciences, Sharif University of Technology, P. O. Box 11155-9415, Tehran, I. R. Iran
Abstract:

Determining the size of a maximum independent set of a graph \(G\), denoted by \(\alpha(G)\), is an NP-hard problem. Therefore, many attempts are made to find upper and lower bounds, or exact values of \(\alpha(G)\) for special classes of graphs. This paper is aimed towards studying this problem for the class of generalized Petersen graphs. We find new upper and lower bounds and some exact values for \(\alpha(P(n,k))\). With a computer program, we have obtained exact values for each \(n 2k\). We prove this conjecture for some cases. In particular, we show that if \(n > 3k\), the conjecture is valid. We checked the conjecture with our table for \(n < 78\) and found no inconsistency. Finally, we show that for every fixed \(k\), \(\alpha(P(n,k))\) can be computed using an algorithm with running time \(O(n)\).

Jeng-Jong Lin1
1Ling Tung University, Taichung 408, Taiwan
Abstract:

In this paper we give the solutions of finding maximum packings and minimum coverings of \(\lambda\)-fold complete symmetric digraphs with \(6\)-circuits.

M.H. Hooshmand1
1DEPARTMENT OF MATHEMATICS, SHIRAZ BRANCH, ISLAMIC AZAD UNIVERSITY, SHI- Raz, IRAN.
Abstract:

In recent researches on a discriminant for polynomials, I faced a recursive (combinatorial) sequence \(\lambda_{n,m}\) whose first four terms and identities are \(\lambda_{0,m} := \binom{m}{0}\), \(\lambda_{1,m} := \binom{m}{1}=\binom{m}{m-1}\), \(\lambda_{2,m} := {\binom{m}{2}}^2 – \binom{m}{2}=\binom{m+1}{m-1}\), and \(\lambda_{3,m} = {\binom{m}{1}}^3 – 2\binom{m}{1}\binom{m}{2} + \binom{m}{3}=\binom{m+2}{m-1}\). In this paper, I introduce this sequence, prove an identity concerning it, and leave a problem and a conjecture regarding its properties.

Fugin Zhan1,2, Youfu Qiao1
1Department of Mathematics, Hechi University, Yizhou 546800, P.R.China
2College of mathematics, Beijing Normal University, Beijing 100875, P.R.China
Abstract:

Let \(\mu_1, \mu_2, \ldots, \mu_n\) be the eigenvalues of the sum-connectivity matrix of a graph \(G\). The sum-connectivity spectral radius of \(G\) is the largest eigenvalue of its sum-connectivity matrix, and the sum-connectivity Estrada index of \(G\) is defined as \(\mathrm{SEE}(G) = \sum_{i=1}^{n} e^{\mu_i}\). In this paper, we obtain some results about the sum-connectivity spectral radius of graphs. In addition, we give some upper and lower bounds on the sum-connectivity Estrada index of graph \(G\), as well as some relations between \(\mathrm{SEE}\) and sum-connectivity energy. Moreover, we characterize that the star has maximum sum-connectivity Estrada index among trees on \(n\) vertices.

M.S.A. Bataineh1, M.M.M. Jaradat2, I.Y.A. Al-Shboul1
1Department of Mathematics Yarmouk University Irbid-Jordan
2Department of Mathematics, Statistics and Physics Qatar University Doha-Qatar
Abstract:

Let \(G(n;\theta_{2k+1})\) denote the class of non-bipartite graphs on \(n\) vertices containing no \(\theta_{2k+1}\)-graph and let \(f(n; \theta_{2k+1}) = \max\{\varepsilon(G) : G \in \mathcal{G}(n;\theta_{2k+1})\}\). In this paper, we determine \(f(n; 0_5)\), by proving that for \(n \geq 11\), \(f(n; 0_5) \leq \lfloor\frac{(n-1)^2}{4}\rfloor + 1\). Further, the bound is best possible. Our result confirms the validity of the conjecture made in [1], “Some extremal problems in graph theory”, Ph.D. thesis, Curtin University of Technology, Australia (2007).

Shubo Chen1
1 Department of Mathematics and Computer Science, Hunan City University, Yiyang, Hunan 413000, P. R. China
Abstract:

Let \(G\) be a cactus, where all blocks of \(G\) are either edges or cycles. Denote \(\mathcal{G}(n,r)\) the set of cactuses of order \(n\) and with \(r\) cycles. In this paper, we present a unified approach to the extremal cactuses for the Schultz and the modified Schultz indices.

Dan Guo1
1Center for Combinatorics, LPMC-TJKLC Nankai University, Tianjin 300071, P.R. China
Abstract:

In this paper, I study the Eulerian numbers \((A(m,k))_{k=1}^{m}\) and prove the relationship between \(\sum_{i=1}^{n}{i^m}\) and \((A(m,k))_{k=1}^{m}\), to be \(\sum_{i=1}^{n}{i^m} = \sum_{k=1}^m A(m,k)\binom{m+k}{m+1}\).

Olof Heden 1, Papa A.Sissokho2
1Department of Mathematics, KTH, S-100 44 Stockholm, Sweden.
24520 Mathematics Department, Illinois State University, Normal, Illinois 61790-4520, U.S.A.
Abstract:

An \((s, t)\)-spread in a finite vector space \(V = V(n, q)\) is a collection \(\mathcal{F}\) of \(t\)-dimensional subspaces of \(V\) with the property that every \(s\)-dimensional subspace of \(V\) is contained in exactly one member of \(F\). It is remarkable that no \((s, t)\)-spreads have been found yet, except in the case \(s = 1\).
In this note, the concept of an \(\alpha\)-point to a \((2,3)\)-spread \(\mathcal{F}\) in \(V = V(7,2)\) is introduced. A classical result of Thomas, applied to the vector space \(V\), states that all points of \(V\) cannot be \(\alpha\)-points to a given \((2,3)\)-spread \(\mathcal{F}\) in \(V\). In this note, we strengthen this result by proving that every \(6\)-dimensional subspace of \(V\) must contain at least one point that is not an \(\alpha\)-point to a given \((2, 3)\)-spread.

S.M. Mirafzal1
1DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ISFAHAN, ISFAHAN 81746-73441, IRAN
Abstract:

We construct explicitly the automorphism group of the folded hypercube \(FQ_n\) of dimension \(n > 3\), as a semidirect product of \(N\) by \(M\), where \(N\) is isomorphic to the Abelian group \(\mathbb{Z}_2^{n}\), and \(M\) is isomorphic to \(\mathrm{Sym}(n+1)\), the symmetric group of degree \(n+1\). Then, we will show that the folded hypercube \(FQ_n\) is a symmetric graph.

Ligong Wang1, Xuran Zhou1
1Department of Applied Mathematics, School of Science, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P.R.China
Abstract:

The Merrifield-Simmons index \(\sigma(G)\) of a graph \(G\) is defined as the number of subsets of the vertex set, in which any two vertices are non-adjacent, i.e., the number of independent vertex sets of \(G\). A tree is called an \(r\)-leaf tree if it contains \(r\) vertices with degree one. In this paper, we obtain the smallest Merrifield-Simmons index among all trees with \(n\) vertices and exactly six leaves, and characterize the corresponding extremal graph.

E-mail Alert

Add your e-mail address to receive upcoming issues of Ars Combinatoria.

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;