Ars Combinatoria

ISSN 0381-7032 (print), 2817-5204 (online)

Ars Combinatoria is the oldest Canadian Journal of Combinatorics, established in 1976. The journal is dedicated to advancing the field of combinatorial mathematics through the publication of high-quality research papers. From 2024 onward, it publishes four volumes per year in March, June, September and December. Ars Combinatoria has gained recognition and visibility in the academic community and is indexed in renowned databases such as MathSciNet, Zentralblatt, and Scopus. The Scope of the journal includes Graph theory, Design theory, Extremal combinatorics, Enumeration, Algebraic combinatorics, Combinatorial optimization, Ramsey theory, Automorphism groups, Coding theory, Finite geometries, Chemical graph theory but not limited.

Bert L. Hartnell1, Douglas F. Rall2
1 Department of Mathematics and Computing Science Saint Mary’s University Halifax, Nova Scotia Canada B3H 3C3
2Department of Mathematics Furman University Greenville, South Carolina 29613 U.S.A.
Abstract:

For any tree \(T\), let \(\gamma(T)\) represent the size of a minimum dominating set. Let \({E}_0\) represent the collection of trees with the property that, regardless of the choice of edge \(e\) belonging to the tree \(T\), \(\gamma(T – e) = \gamma(T)\). We present a constructive characterization of \({E}_0\).

R. Craigen 1
1Dept. of Mathematics University of Lethbridge Lethbridge, AB Canada T1K 3M4
Abstract:

A procedure based on the Kronecker product yields \(\pm 1\)-matrices \(X,Y\) of order \(8mn\), satisfying
\(XX^t + YY^t = 8mnI \quad {and} \quad XY^t = YX^t = 0,\)
given Hadamard matrices of orders \(4m\) and \(4n\). This allows the construction of some infinite classes of Hadamard matrices – and in particular orders \(8mnp\), for values of \(p\) including (for \(j \geq 0\)) \(5, 9^j, 25, 9^j, \), improving the usual Kronecker product construction by at least a factor of \(2\). A related construction gives Hadamard matrices in orders \(4 \cdot 5^i \cdot 9^j, 0 \leq i \leq 4\). To this end we introduce some disjoint weighing matrices and exploit certain Williamson matrices studied by Turyn and Xia. Some new constructions are given for symmetric and skew weighing matrices, resolving the case of skew \(W(N, 16)\) for \(N = 30, 34, 38\).

L.J. Cummings1, M.E. Mays2
1University of Waterloo Waterloo, Ontario Canada N2L 3G1
2 West Virginia University Morgantown, West Virginia U.S.A. 26506
Abstract:

The set of Lyndon words of length \(N\) is obtained by choosing those strings of length \(n\) over a finite alphabet which are lexicographically least in the aperiodic equivalence classes determined by cyclic permutation. We prove that interleaving two Lyndon words of length \(n\) produces a Lyndon word of length \(2n\). For the binary alphabet \(\{0, 1\}\) we represent the set of Lyndon words of length \(n\) as vertices of the \(n\)-cube. It is known that the set of Lyndon words of length \(n\) form a connected subset of the \(n\)-cube. A path of vertices in the \(n\)-cube is a list of strings of length \(n\) in which adjacent strings differ in a single bit. Using paths of Lyndon words in the \(n\)-cube we construct longer paths of Lyndon words in higher order cubes by shuffling and concatenation.

A.M. Assaf1, W.H. Mills2, R.C. Mullin3
1 Central Michigan University
2Institute for Defense Analyses
3 University of Waterloo
Abstract:

A tricover of pairs by quintuples of a \(v\)-set \(V\) is a family of \(5\)-subsets of \(V\) (called blocks) with the property that every pair of distinct elements from \(V\) occurs in at least three blocks. If no other such tricover has fewer blocks, the tricover is said to be minimum, and the number of blocks in a minimum tricover is the covering number \(C_3(v, 5, 2)\), or simply \(C_3(v)\). It is well known that\(C_3(v) \geq \lceil \frac{{v} \lceil \frac {3(v-1)}{4} \rceil} {5} \rceil = B_3(v)\) , where \(\lceil x \rceil\) is the least integer not less than \(x\). It is shown here that if \(v \equiv 0 \pmod{4}\) and \(v \geq 8\), then \(C_3(v) = B_3(v)\).

Kishore Sinha1, A. D. Das2, Sanpei Kageyama3
1Department of Statistics Birsa Agricultural University Ranchi – 834006, India
2Department of Statistics Bidhan Chandra Krishi Vishwavidyalaya Cooch-Behar – 736101, India
3Department of Mathematics Hiroshima University Shinonome, Hiroshima 734, Japan
Abstract:

The concept of rectangular designs with varying replicates is introduced. A class of such designs is constructed with an example.

Yukio Shibata1, Yasuo Seki2
1 Department of Computer Science Gunma University 1-5-1 Tenjin-cho, Kiryu, Gunma 376 Japan
2NTT Corporation 66-2 Horikawa-cho, Saiwaiku, Kawasaki, Kanagawa, 210 Japan
Abstract:

We study the isomorphic factorization of complete bipartite graphs into trees. It is known that for complete bipartite graphs, the divisibility condition is also a sufficient condition for the existence of isomorphic factorization. We give necessary and sufficient conditions for the divisibility, that is, necessary and sufficient conditions for a pair \([m,n]\) such that \(mn\) is divisible by \((m+n-1)\), and investigate structures of the set of pairs \([m,n]\) satisfying divisibility. Then we prove that the divisibility condition is also sufficient for the existence of an isomorphic tree factor of a complete bipartite graph by constructing the tree dividing \(K({m,n})\).

A. Pawel Wojda1, Mariusz Woéniak1
1Instvtut Matematyki Akademia G6émiczo-Hutnicza Al. Mickiewicza 30 30-059 Krak6éw, Poland
Abstract:

A known theorem of Bigalke and Jung says that the only nonhamiltonian, tough graph \(G\) with \(\alpha(G) \leq H(G) + 1\), where \(H(G) \geq 3\), is the Petersen graph. In this paper we characterize all nonhamiltonian, tough graphs having k total vertex (i.e. adjacent to all others) with \(\alpha(G) \leq k+ 2\) (Theorem 3).

S.A. Choudum1
1 School of Mathematical Sciences Madurai Kamaraj University Madurai 625 021 INDIA
Abstract:

Given a sequence \(S: d_1, d_2, \ldots, d_p\) of non-negative integers, we give necessary and sufficient conditions for a subsequence of \(S\) with \(p – 1\) terms to be graphical.

S.M. Lee1, A. Lia2
1 Department of Mathematics and Computing Science San Jose State University San Jose, CA 95192
2 Department of Mathematics University of Alberta Edmonton, ALTA, T6G 2G1
Lian-Chang Zhao 1, Jing-Hua Meng 1
1Department of Mathematics Northeast Institute of Technology Shenyang PEOPLE’S REPUBLIC OF CHINA
Abstract:

Let \(D\) be a strictly disconnected digraph with \(n\) vertices. A common out-neighbor (resp. in-neighbor) of a pair of vertices \(u\) and \(v\) is a vertex \(x\) such that \(ux\) and \(vx\) (resp. \(xu\) and \(xv\)) are arcs of \(D\). It is shown that if

\[d^+(u_1) + d^+(v_1) + d^-(u_2) + d^-(v_2) > 2n-1\]

for any pair \(u_1, v_1\) of nonadjacent vertices with a common out-neighbor and any pair \(u_2, v_2\) of nonadjacent vertices with a common in-neighbor, then \(D\) contains a directed Hamiltonian cycle.

E-mail Alert

Add your e-mail address to receive upcoming issues of Ars Combinatoria.

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;