Ars Combinatoria

ISSN 0381-7032 (print), 2817-5204 (online)

Ars Combinatoria is the oldest Canadian Journal of Combinatorics, established in 1976. The journal is dedicated to advancing the field of combinatorial mathematics through the publication of high-quality research papers. From 2024 onward, it publishes four volumes per year in March, June, September and December. Ars Combinatoria has gained recognition and visibility in the academic community and is indexed in renowned databases such as MathSciNet, Zentralblatt, and Scopus. The Scope of the journal includes Graph theory, Design theory, Extremal combinatorics, Enumeration, Algebraic combinatorics, Combinatorial optimization, Ramsey theory, Automorphism groups, Coding theory, Finite geometries, Chemical graph theory but not limited.

K. Sinha1, M. K. Singh2
1 Department of Statistics Birsa Agricultural University Ranchi 834006
2 Department of Mathematics Ranchi University Ranchi 834001 INDIA
Abstract:

A series of partially balanced incomplete block design yields under certain
restrictions, a new series of BIB designs with parameters:
\[v=\binom{2s+1}{2}, b=\frac{1}{2}(s+1)\binom{2s+1}{s+1}\]
\[v=s \binom{2s-1}{s},k=s^2, \lambda=(s-1)\binom{2s-1}{s-1}\]
where \(s \geq 2\) is any positive integer.

Xiang-dong Hou1
1 Department of Mathematics University of Wyoming Laramie, Wyoming 82071 U.S.A.
Abstract:

A \(d\)-design is an \(n \times n\) \((0,1)\)-matrix \(A\) satisfying \(A^t A = \lambda J + {diag}(k_1 – \lambda, \ldots, k_n – \lambda)\), where \(A^t\) is the transpose of \(A\), \(J\) is the \(n \times n\) matrix of ones, \(k_j >\lambda > 0\) (\(1 \leq j \leq n\)), and not all \(k_i\)’s are equal. Ryser [4] and Woodall [6] showed that such an \(A\) has precisely two row sums \(r_1\) and \(r_2\) (\(r_1 > r_2\)) with \(r_1 + r_2 = n + 1\). Let \(e_1\) be the number of rows of \(A\) with sum \(r_1\). It is shown that if \(e_1 = 4\), then \(\lambda = 3\).

Xu Shaoji1
1Department of Mathematics Shanghai Teachers’ University Shanghai, China
Abstract:

In this note we introduce a lemma which is useful in studying the chromaticity of graphs. As examples, we give a short proof for a conclusion in \([3]\).

J.A. Davis 1
1 University of Richmond VA 23173 U.S.A.
Abstract:

The existence of difference sets in abelian \(2\)-groups is a recently settled problem \([5]\); this note extends the abelian constructs of difference sets to nonabelian groups of order \(64\).

Manolis Manoussakis1, Yannis Manoussakis2
1 Universitat Salzburg Mathematisches Institut Hellbrunnerstr 34, AUSTRIA
2Université PARIS-XI (ORSAY) L.R.I. bat. 490 91405 ORSAY Cedex, FRANCE
Abstract:

We deal with conditions on the number of arcs sufficient for bipartite digraphs to have cycles and paths with specified properties.

Andrzej Rucitiski 1
1Department of Discrete Mathematics Adam Mickiewicz University 60-769 Poznan, Poland
Abstract:

The convex hull of graph \(G\), a notion born in the theory of random graphs, is the convex hull of the set in \(xy\)-plane obtained by representing each subgraph \(H\) of \(G\) by the point whose coordinates are the number of vertices and edges of \(H\).

In the paper, the maximum number of corners of the convex hull of an \(n\)-vertex graph, bipartite graph, and \(K({r})\)-free graph is found. The same question is posed for strictly balanced graphs.

D. R. Woodall 1
1Department of Mathematics University of Nottingham Nottingham NG7 2RD England
Abstract:

Conjectured generalizations of Hadwiger’s Conjecture are discussed. Among other results, it is proved that if \(X\) is a set of \(1\), \(2\) or \(3\) vertices in a graph \(G\) that does not have \(K_6\) as a subcontraction, then \(G\) has an induced subgraph that is \(2\)-, \(3\)- or \(4\)-colourable, respectively, and contains \(X\) and at least a quarter, a third or a half, respectively, of the remaining vertices of \(G\). These fractions are best possible.

Imre Leader1
1 Department of Pure Mathematics and Mathematical Statistics University of Cambridge ENGLAND
Wang Jian-zhong1
1 Department of Mathematics, Physics, and Mechanics Taiyuan Institute of Machinery Taiyuan Shanxi 030051 PR, of CHINA
Abstract:

In 1967 Alspach [1] proved that every arc of a diregular tournament is contained in cycles of all possible lengths. In this paper, we extend this result to bipartite tournaments by showing that every arc of a diregular bipartite tournament is contained in cycles of all possible even lengths, unless it is isomorphic to one of the graphs \(F_{4k} \). Simultaneously, we also prove that an almost diregular bipartite tournament \(R\) is Hamiltonian if and only if \(|V_1| = |V_2|\) and \(R\) is not isomorphic to one of the graphs \(F_{4k-2}\), where \((V_1, V_2)\) is a bipartition of \(R\). Moreover, as a consequence of our first result, it follows that every diregular bipartite tournament of order \(p\) contains at least \(p/4\) distinct Hamiltonian cycles. The graphs \(F_r = (V, A)\), (\(r \geq 2\)) is a family of bipartite tournaments with \(V = \{v_1, v_2, \ldots, v_r\}\) and \(A = \{v_iv_j | j – i \equiv 1 \pmod{4}\}\).

Arundhati Raychaudhuri1
1 Department of Mathematics The College of Staten Island, CUNY 130 Stuyvesant Place Staten Island, New York 10301
Abstract:

In this paper we study the edge clique graph \(K(G)\) of many classes of intersection graphs \(G\) — such as graphs of boxicity \(\leq k\), chordal graphs and line graphs. We show that in each of these cases, the edge clique graph \(K(G)\) belongs to the same class as \(G\). Also, we show that if \(G\) is a \(W_4\)-free transitivity orientable graph, then \(K(G)\) is a weakly \( \theta \)-perfect graph.

E-mail Alert

Add your e-mail address to receive upcoming issues of Ars Combinatoria.

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;