
In this paper, we show that for every sufficiently large integer
We construct all self-dual
Metamorphoses of small
We deal with the problem of labeling the vertices, edges, and faces of a plane graph in such a way that the label of a face and the labels of the vertices and edges surrounding that face add up to a weight of that face, and the weights of all the faces constitute an arithmetical progression of difference
If
This paper presents a new approach in the quest for a solution to the
A cyclic or bicyclic
For loopless plane multigraphs
The bin packing problem has been studied extensively since the 1970’s, and it is known to be applicable to many different areas, especially in operations research and computer science. In this paper, we present a variant of the classical bin packing problem, which allows the packing to exceed its bin size but at least a fraction of the last piece is within the bin, and we call it the open-end bin packing problem. This paper is focused on on-line open-end bin packing. An on-line open-end bin packing algorithm is to assign incoming pieces into the bins on-line, that is, there is no information about the sizes of the pieces in future arrivals. An on-line algorithm is optimal if it always produces a solution with the minimum number of bins used for packing. We show that no such optimal algorithm exists. We also present seven efficient on-line algorithms: Next Fit, Random Fit, Worst Fit, Best Fit, Refined Random Fit, Refined Worst Fit, and Refined Best Fit, which give sub-optimal solutions. The performances of these algorithms are studied. A case study for the application of the studied problem is presented, and this is a practical problem on maximizing the savings of using stored-value tickets issued by Kowloon-Canton Railway (KCR), which is one of the major public transportation means in Hong Kong.
We explore the maximum possible toughness among graphs with
A set
We show that for every
An extended 5-cycle system of order
McMorris, Zaslavsky, and Diny give characterizations of upper bound graphs and double bound graphs in terms of edge clique covers, that is, a family of maximal complete subgraphs that covers all edges. Lundgren and Maybee give a characterization of upper bound graphs using a concept of non-maximal complete subgraphs. In this paper, we present characterizations of double bound graphs and semi-bound graphs in terms of edge covers of non-maximal complete subgraphs.
We consider families of linear self-orthogonal and self-dual codes over the ring
Let
In this paper, it will be shown that a Skolem sequence of order
For
We provide complete lists of starters and Skolem sequences which generate perfect one-factorizations of complete graphs up to order
We find new full orthogonal designs in order 72 and show that of 2700 possible
Classical bin packing has been studied extensively in the literature. Open-ends bin packing is a variant of the classical bin packing. Open-ends bin packing allows pieces to be partially beyond a bin, while the classical bin packing requires all pieces to be completely inside a bin. We investigate the open-ends bin packing problem for both the off-line and on-line versions and give algorithms to solve the problem for parametric cases.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.