Journal of Combinatorial Mathematics and Combinatorial Computing

ISSN: 0835-3026 (print) 2817-576X (online)

The Journal of Combinatorial Mathematics and Combinatorial Computing (JCMCC) embarked on its publishing journey in April 1987. From 2024 onward, it publishes four volumes per year in March, June, September and December. JCMCC has gained recognition and visibility in the academic community and is indexed in renowned databases such as MathSciNet, Zentralblatt, Engineering Village and Scopus. The scope of the journal includes; Combinatorial Mathematics, Combinatorial Computing, Artificial Intelligence and applications of Artificial Intelligence in various files.

Kenneth Williams1, Alfred Boals1
1Department of Computer Science Western Michigan University Kalamazoo, MI 49008 USS.A.
Abstract:

Digraph \(D\) is defined to be exclusive \((M, N)\)-transitive if, for each pair of vertices \(x\) and \(y\), for each \(xy\)-path \(P_1\) of length \(M\), there is an \(xy\)-path \(P_2\) of length \(N\) such that \(P_1 \cap P_2 = \{x, y\}\). It is proved that computation of a minimal edge augmentation to make \(K\) exclusive \((M, N)\)-transitive is NP-hard for \(M > N \geq 2\), even if \(D\) is acyclic. The corresponding decision problems are NP-complete. For \(N = 1\) and \(D = (V, E)\) with \(|V| = n\), an \(O(n^{M+3})\) algorithm to compute the exclusive \((M, 1)\)-transitive closure of an arbitrary digraph is provided.

L. Zhu1
1Department of Mathematics Suzhou University Suzhou, CHINA
Abstract:

Let \(v\), \(k\), and \(\lambda\) be positive integers. A perfect Mendelsohn design with parameters \(v\), \(k\), and \(\lambda\), denoted by \((v, k, \lambda)\)-PMD, is a decomposition of the complete directed multigraph \(\lambda K_v^*\) on \(v\) vertices into \(k\)-circuits such that for any \(r\), \(1 \leq r \leq k-1\), and for any two distinct vertices \(x\) and \(y\) there are exactly \(\lambda\) circuits along which the (directed) distance from \(x\) to \(y\) is \(r\). In this survey paper, we describe various known constructions, new results, and some further questions on PMDs.

C. E. Praeger1
1Department of Mathematics University of Western Australia Nedlands W.A. 6009
L. Zhu1
1Department of Mathematics Suzhou University Suzhou Peopie’s Republic of China
Abstract:

A diagonal Latin square is a Latin square whose main diagonal and back diagonal are both transversals. It is proved in this paper that there are three pairwise orthogonal diagonal Latin squares of order \(n\) for all \(n \geq 7\) with \(28\) possible exceptions, in which \(118\) is the greatest one.

C. C. Lindner1, C. A. Rodger1, J. D. Horton2
1Department of Algebra, Combinatorics and Analysis Auburn University Auburn, Alabama 36849 U.S.A,
2School of Computer Science University of New Brunswick Fredericton, New Brunswick E3B 5A3 CANADA
Guizhen Liu1
1Department of Mathematics Shandong University Jinan, Shandong The People’s Republic of China
Abstract:

A graph \(G\) is \([a, b]\)-covered if each edge of \(G\) belongs to an \([a, b]\)-factor. Here, a necessary and sufficient condition for a graph to be \([a, b]\)-covered is given, and it is shown that an \([m, n]\)-graph is \([a, b]\)-covered if \(bm – na \geq 2(n-b)\) and \(0 \leq a < b \leq n\).

C. C. Lindner1, C. A. Rodger1
1Department of Algebra, Combinatorics and Analysis Auburn University Aubum, Alabama 36849 U.S.A.
D. R. Shier1, N. Chandrasekharan2
1College of William and Mary Williamsburg, VA
2Clemson University Clemson, SC
Abstract:

The chromatic polynomial captures a good deal of combinatorial information about a graph, describing its acyclic orientations, its all-terminal reliability, its spanning trees, as well as its colorings. Several methods for computing the chromatic polynomial of a graph G construct a computation tree for G whose leaves are “simple” base graphs for which the chromatic polynomial is readily found. Previously studied methods involved base graphs which are complete graphs, completely disconnected graphs, forests, and trees. In this paper, we consider chordal graphs as base graphs. Algorithms for computing the chromatic polynomial based on these concepts are developed, and computational results are presented.

STANISEAW P. RADZISZOWSKI1, DONALD L. KREHER1
1School of Computer Science and Technology Rochester Institute of Technology Rochester, NY 14623
Abstract:

Using several computer algorithms, we calculate some values and bounds for the function \(e(3,k,n)\), the minimum number of edges in a triangle-free graph on \(n\) vertices with no independent set of size \(k\). As a consequence, the following new upper bounds for the classical two-color Ramsey numbers are obtained:
\(R(3,10) \leq 43\), \(\quad\)
\(R(3,11) \leq 51\), \(\quad\)
\(R(3,12) \leq 60\), \(\quad\)
\(R(3,13) \leq 69\) \(\quad\) and
\(R(3,14) \leq 78\).

E-mail Alert

Add your e-mail address to receive upcoming issues of Journal of Combinatorial Mathematics and Combinatorial Computing (JCMCC).

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;