Journal of Combinatorial Mathematics and Combinatorial Computing

ISSN: 0835-3026 (print) 2817-576X (online)

The Journal of Combinatorial Mathematics and Combinatorial Computing (JCMCC) embarked on its publishing journey in April 1987. From 2024 onward, it publishes four volumes per year in March, June, September and December. JCMCC has gained recognition and visibility in the academic community and is indexed in renowned databases such as MathSciNet, Zentralblatt, Engineering Village and Scopus. The scope of the journal includes; Combinatorial Mathematics, Combinatorial Computing, Artificial Intelligence and applications of Artificial Intelligence in various files.

Brett A.Jenkins1, C. Koukouvinost2, S. Kouniast2, Jennifer Seberry1, Ralph Seberry1
1Department of Computer Science University College University of New South Wales Australian Defence Force Academy Canberra, 2600, Australia
2Department of Mathematics University of Thessaloniki Thessaloniki, 54006 Greece
Abstract:

We give some results on the excess of Hadamard matrices. We provide a list for Hadamard matrices of order \(\leq 1000\) of the smallest upper bounds known for the excess for each order. A construction is indicated for the maximal known excess.

Charles J. Colbourn1
1 Department of Combinatorics and Optimization University of Waterloo Waterloo, Ontario N2L 3G1 Canada
Abstract:

The type of a \(3\)-factorization of \(3K_{2n}\) is the pair \((t,s)\), where \(t\) is the number of doubly repeated edges in \(3\)-factors, and \(\binom{n}{2} – s\) is the number of triply repeated edges in \(3\)-factors. We determine the spectrum of types of \(3\)-factorizations of \(3K_{2n}\), for all \(n \geq 6\); for each \(n \geq 6\), there are \(43\) pairs \((t,s)\) meeting numerical conditions which are not types and all others are types. These \(3\)-factorizations lead to threefold triple systems of different types.

RC. Mullin1
1University of Waterloo
Abstract:

Let \(V\) be a finite set of \(v\) elements. A covering of the pairs of \(V\) by \(k\)-subsets is a family \(F\) of \(k\)-subsets of \(V\), called blocks, such that every pair in \(V\) occurs in at least one member of \(F\). For fixed \(v\), and \(k\), the covering problem is to determine the number of blocks of any minimum (as opposed to minimal) covering. Denote the number of blocks in any such minimum covering by \(C(2,k,v)\). Let \(B(2,5,v) = \lceil v\lceil{(v-1)/4}\rceil/{5}\rceil\). In this paper, improved results for \(C(2,5,v)\) are provided for the case \(v \equiv 1\) \(\quad\) or \(\quad\) \(2 \;(mod\;{4})\).\(\quad\) For \(\quad\) \(v \equiv 2\; (mod\;{4})\), \(\quad\) it \(\quad\) is \(\quad\) shown \(\quad\) that \(C(2,5,270) = B(2,5,270)\) and \(C(2,5,274) = B(2,5,274)\), establishing the fact that if \(v \geq 6\) and \(v \equiv 2\;mod\;4\), then \(C(2,5,v) = B(2,5,v)\). In addition, it is shown that if \(v \equiv 13\;(mod\;{20})\), then \(C(2,5,v) = B(2,5,v)\) for all but \(15\) possible exceptions, and if \(v \equiv 17\;(mod\;{20})\), then \(C(2,5,v) = B(2,5,v)\) for all but \(17\) possible exceptions.

John A. Bate1, Marshall Hall Jr.2, G.H. John van Rees1
1Department of Computer Science University of Manitoba
2Department of Mathematics and Computer Science Emory University
Dragan Maragic1
1Mathematics Department, University of California Santa Cruz, CA 95064, USA (Vojke Smuc 12, 66000 Koper, Yugoslavia)
Abstract:

The structure and the hamiltonicity of vertex-transitive graphs of order \(qp\), where \(q\) and \(p\) are distinct primes, are studied. It is proved that if \(q < p\) and \(\text{p} \not\equiv 1 \pmod{\text{q}}\) and \(G\) is a vertex-transitive graph of order \(qp\) such that \({Aut}G\) contains an imprimitive subgroup, then either \(G\) is a circulant or \(V(G)\) partitions into \(p\) subsets of cardinality \(q\) such that there exists a perfect matching between any two of them. Partial results are obtained for \(\text{p} \equiv 1 \pmod{\text{q}}\). Moreover, it is proved that every connected vertex-transitive graph of order \(3p\) is hamiltonian.

D. L. Kreher1, Wet Li 1, S. P. Radziszowaka1
1School of Computer Science Rochester Institute of Technology Rochester, New York 14623 U.S.A.
Abstract:

In this paper, the algorithm developed in \([RK]\) for \(2\)-color Ramsey numbers is generalized to multi-colored Ramsey numbers. All the cyclic graphs yielding the lower bounds \(R(3,3,4) \geq 30\), \(R(3,3,5) \geq 45\), and \(R(3,4,4) \geq 55\) were obtained. The two last bounds are apparently new.

Tim Hough1, Frank Ruskey2
1Computer Science Department U.C. San Diego La Jolla, CA 92093
2Department of Computer Science University of Victoria Victoria, B.C. V8W 2¥2
Abstract:

Consider combinations of \(k\) out of \(n\) items as represented by bit-strings of length \(n\) with exactly \(k\) ones. An algorithm for generating all such combinations so that successive bit-strings differ by the interchange of a single \(01\) or \(10\) pair exists only if \(n\) is even and \(k\) is odd (except for the trivial cases where \(k = n, n-1, 0, 1\)). This was shown by Eades, Hickey, and Read \([4]\) (and others) but no explicit algorithm was given. Later, Carkeet and Eades \([3]\) gave an inefficient, exponential storage implementation. Here, we present an implementation of the algorithm of \([4]\) that is constant average time, and uses linear storage.

R. G. Stanton1
1Department of Computer Science University of Manitoba Winnipeg, Canada R3T 2N2
Abstract:

The minimum cardinality of a pairwise balanced design on nineteen points is determined; a minimal design is exhibited containing \(13\) triples and \(22\) quadruples.

Martin J. SHARRY1, ANNE PENFOLD STREET1
1Department of Mathematics University of Queensland St.Lucia, Queensland 4067 AUSTRALIA
Abstract:

It is shown that the collection of all the \(\dbinom{10}{3}\) triples chosen from a set of ten points can be partitioned into ten mutually disjoint \(2-(9,3,1)\) designs in precisely \(77\) non-isomorphic ways.

STANISLAW P. RADZISZOWSKI1, DONALD L. KREHER1
1School of Computer Science and Technology Rochester Institute of Technology Rochester, NY 14623
Abstract:

A \((3,k,n,e)\) Ramsey graph is a triangle-free graph on \(n\) vertices with \(e\) edges and no independent set of size \(k\). Similarly, a \((3,k)\)-, \((3,k,n)\)-, or \((3,k,n,e)\)-graph is a \((3,k,n,e)\) Ramsey graph for some \(n\) and \(e\). In the first part of the paper, we derive an explicit formula for the minimum number of edges in any \((3,k,n)\)-graph for \(n\leq3(k-1)\), i.e., a partial formula for the function \(e(3,k,n)\) investigated in \([3,5,7]\). We prove some general properties of minimum \((3,k,n)\)-graphs with \(e(3,k,n)\) edges and present a construction of minimum \((3,k+1,3k-1,5k-5)\)-graphs for \(k\geq2\) and minimum \((3,k+1,3k,5k)\)-graphs for \(k\geq4\). In the second part of the paper, we describe a catalogue of small Ramsey graphs: all \((3,k)\)-graphs for \(k\leq6\) and some \((3,7)\)-graphs, including all \(191 (3,7,22)\)-graphs, produced by a computer. We present for \(k\leq7\) all minimum \((3,k,n)\)-graphs and all \(10\) maximum \((3,7,22)\)-graphs with \(66\) edges.

E-mail Alert

Add your e-mail address to receive upcoming issues of Journal of Combinatorial Mathematics and Combinatorial Computing (JCMCC).

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;