Journal of Combinatorial Mathematics and Combinatorial Computing

ISSN: 0835-3026 (print) 2817-576X (online)

The Journal of Combinatorial Mathematics and Combinatorial Computing (JCMCC) embarked on its publishing journey in April 1987. From 2024 onward, it publishes four volumes per year in March, June, September and December. JCMCC has gained recognition and visibility in the academic community and is indexed in renowned databases such as MathSciNet, Zentralblatt, Engineering Village and Scopus. The scope of the journal includes; Combinatorial Mathematics, Combinatorial Computing, Artificial Intelligence and applications of Artificial Intelligence in various files.

D. V. Chopra1
1Department of Mathematics and Statistics Wichita State University Wichita, Kansas 67208
Abstract:

In this paper, we obtain results on the number of constraints \(m\) for some balanced arrays of strength \(4\) when the parameters \(\mu_2\), \(\mu_3\) assume the values \(1\) and \(0\) respectively. It is shown that the maximum value of \(m\) is \(\mu_1 + 4\), and the existence of such an array is established.

R. Bruce Rachter1
1U.S. Naval Acedemy
Abstract:

A basis is exhibited for the first homology space of a surface over a field. This basis is found by extending a basis of the boundary cycle space of an embedded graph to the cycle space of the graph.

RC. Mullin1
1Department of Combinatorics and Optimization University of Waterloo Waterloo, Ontario N2L 3G1 Canada
Abstract:

Let \(C(v)\) denote the least number of quintuples of a \(v\)-set \(V\) with the property that every pair of distinct elements of \(V\) occurs in at least one quintuple. It is shown, for \(v \equiv 3 \text{ or } 11\; \text{modulo} \;20\) and \(v \geq 11\), that \(C(v) = \lceil(v-1)/{4}\rceil\) with the possible exception of \(v \in \{83, 131\}\).

L. Caccetta1, W. F. Smyth2
1School of Mathematics & Computing Curtin University of Technology Bentley WA 6102 Australia
2Dept. of Computer Science & Systems McMaster University Hamilton Ont. L8S 4K1 Canada
Abstract:

An undirected graph of diameter \(D\) is said to be \(D\)-critical if the addition of any edge decreases its diameter. The structure of \(D\)-critical graphs can be conveniently studied in terms of vertex sequences. Following on earlier results, we establish, in this paper, fundamental properties of \(K\)-edge-connected \(D\)-critical graphs for \(K\geq8\) and \(D\geq7\). In particular, we show that no vertex sequence corresponding to such a graph can contain an “internal” term less than \(3\), and that no two non-adjacent internal terms can exceed \(\text{K}-\lceil{2}\sqrt{\text{K}}\rceil+1\). These properties will be used in forthcoming work to show that every subsequence (except at most one) of length three of the vertex sequence contains exactly \(K+1\) vertices, a result which leads to a complete characterization of edge-maximal vertex sequences.

D. de Caen1
1Department of Mathematics and Statistics Queen’s University, Kingston, Canada K7L 3N6
No authors found.
K. T. Arasu1
1 Department of Mathematics & Statistics Wright State University Dayton, Ohio 45435
Abstract:

Lander Conjectured: If \(D\) is a \((\text{v, k}, \lambda)\) difference set in an abelian group G with a cyclic Sylow p-subgroup, then p does not divide \((v, n)\), where \(\text{n} = \text{k} – \lambda \).

In a previous paper, the above conjecture was verified for \(\lambda = 3\) and \(\text{k} \leq 500\), except for \(\text{k} = 228, 282\) and \(444\). These three exceptional values are dealt with in this note, thereby verifying Lander’s conjecture completely for \(\lambda = 3\) and \(\text{k} \leq 500\).

R.W. Buskens1, R.G. Stanton1
1Department of Computer Science University of Manitoba Winnipeg, Manitoba, Canada R3T 2N2
Abstract:

Generalized Moore graphs are regular graphs that satisfy an additional distance condition, namely, that there be the maximum number of vertices as close as possible to any particular vertex, when that vertex is considered as root vertex. These graphs form a useful model for the study of various theoretical properties of computer communications networks. In particular, they lend themselves to a discussion of lower bounds for network cost, delay, reliability, and vulnerability. A considerable number of papers have already been published concerning the existence and properties of generalized Moore graphs of valence three, and some initial studies have discussed generalized Moore graphs of valence four, when the number of vertices is less than fourteen. This paper continues the previous studies for those cases when the graph contains a number of vertices that is between fourteen and twenty. In the case of valence three, the graph with a complete second level exists; it is just the Petersen graph. The situation is quite different for valence four; not only does the graph with a complete second level not exist, but the graphs in its immediate “neighbourhood” also fail to exist.

E.R. Lamken1, S.A. Vanstone2
1 School of Mathematics Georgia Institute of Technology Atlanta, GA 30332
2Department of Combinatorics and Optimization University of Waterloo Waterloo, Ontario, Canada N2L 3G1
Abstract:

In this paper, we investigate the existence of skew frames with sets of skew transversals. We consider skew frames of type \(1^n\) and skew frames of type \((2^m)^q\) with sets of skew transversals. These frames are equivalent to three-dimensional frames which have complementary \(2\)-dimensional projections with special properties.

E-mail Alert

Add your e-mail address to receive upcoming issues of Journal of Combinatorial Mathematics and Combinatorial Computing (JCMCC).

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;