Lutz Volkmann1
1Lehrstuhl II für Mathematik RWTH Aachen University 52056 Aachen, Germany
Abstract:

A signed total Italian dominating function (STIDF) of a graph \( G \) with vertex set \( V(G) \) is defined as a function \( f : V(G) \to \{-1,1,2\} \) having the property that (i) \( \sum_{x \in N(v)} f(x) \geq 1 \) for each \( v \in V(G) \), where \( N(v) \) is the neighborhood of \( v \), and (ii) every vertex \( u \) for which \( f(u) = -1 \) is adjacent to a vertex \( v \) for which \( f(v) = 2 \) or adjacent to two vertices \( w \) and \( z \) with \( f(w) = f(z) = 1 \). The weight of an STIDF is the sum of its function values over all vertices. The \textit{signed total Italian domination number} of \( G \), denoted by \( \gamma_{stI}(G) \), is the minimum weight of an STIDF in \( G \). We initiate the study of the signed total Italian domination number, and we present different sharp bounds on \( \gamma_{stI}(G) \). In addition, we determine the signed total Italian domination number of some classes of graphs.

Zhicheng Gao1, Tiancheng Zhang1
1School of Mathematics and Statistics Carleton University Ottawa, Ontario Canada K1S5B6
Abstract:

One may generalize integer compositions by replacing positive integers with elements from an additive group, giving the broader concept of compositions over a group. In this note, we give some simple bijections between compositions over a finite group. It follows from these bijections that the number of compositions of a nonzero group element \( g \) is independent of \( g \). As a result, we derive a simple expression for the number of compositions of any given group element. This extends an earlier result for abelian groups which was obtained using generating functions and a multivariate multisection formula.

Joseph Fox1, Aimee Judd1
1Aquinas College 1700 E Fulton St, Grand Rapids, MI 49506
Abstract:

An acyclic ordering of a directed acyclic graph (DAG) \( G \) is a sequence \( \alpha \) of the vertices of \( G \) with the property that if \( i < j \), then there is a path in \( G \) from \( \alpha(i) \) to \( \alpha(j) \). In this paper, we explore the problem of finding the number of possible acyclic orderings of a general DAG. The main result is a method for reducing a general DAG to a simpler one when counting the number of acyclic orderings. Along the way, we develop a formula for quickly obtaining this count when a DAG is a tree.

Yunxia Ren1, Shiying Wang1
1Henan Engineering Laboratory for Big Data Statistical Analysis and Optimal Control School of Mathematics and Information Science Henan Normal University, Xinxiang, Henan 453007 PR China
Abstract:

The diagnosability of a multiprocessor system is one important study topic. In 2016, Zhang et al. proposed a new measure for fault diagnosis of the system, namely, the \( g \)-extra diagnosability, which restrains that every fault-free component has at least \( (g+1) \) fault-free nodes. As a favorable topology structure of interconnection networks, the \( n \)-dimensional alternating group graph \( AG_n \) has many good properties. In this paper, we prove that the 3-extra diagnosability of \( AG_n \) is \( 8n – 25 \) for \( n \geq 5 \) under the PMC model and for \( n \geq 7 \) MM* model.

Zhangdong Ouyang1, Jing Wang2, Yuanqiu Huang3
1Department of Mathematics, Hunan First Normal University, Changsha 410205, P. R. China
2Department of Mathematics and Information Sciences, Changsha University, Changsha 410003, P. R. China
3Department of Mathematics, Hunan Normal University, Changsha 410081, P. R. China
Abstract:

M. Klešc et al. characterized graphs \( G_1 \) and \( G_2 \) for which the crossing number of their Cartesian product \( G_1 \square G_2 \) equals one or two. In this paper, their results are extended by giving the necessary and sufficient conditions for all pairs of graphs \( G_1 \) and \( G_2 \) for which the crossing number of their Cartesian product \( G_1 \square G_2 \) equals three, if one of the graphs \( G_1 \) and \( G_2 \) is a cycle.

Magda Dettlaff1, Magdalena Lemańska1, Dorota Osula2, María José Souto-Salorio3
1Gdańsk University of Technology, Gdańsk, Poland
2Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Gdańsk, Poland
3Facultade de Informatica, Campus de Elviña, Universidade da Coruña, CP 15071, A Coruña, España
Abstract:

In this paper we study relations between connected and weakly convex domination numbers. We show that in general the difference between these numbers can be arbitrarily large and we focus on the graphs for which a weakly convex domination number equals a connected domination number. We also study the influence of the edge removing on the weakly convex domination number, in particular we prove that the weakly convex domination number is an interpolating function.

Audace A. V. Dossou-Olory1
1Department of Mathematical Sciences Stellenbosch University Private Bag X1, Matieland 7602 South Africa
Abstract:

Denote by \( p_m \) the \( m \)-th prime number (\( p_1 = 2 \), \( p_2 = 3 \), \( p_3 = 5 \), \( p_4 = 7 \), \dots). Let \( T \) be a rooted tree with branches \( T_1, T_2, \dots, T_r \). The Matula number \( M(T) \) of \( T \) is \( p_{M(T_1)} \cdot p_{M(T_2)} \cdots p_{M(T_r)} \), starting with \( M(K_1) = 1 \). This number was put forward half a century ago by the American mathematician David Matula. In this paper, we prove that the star (consisting of a root and leaves attached to it) and the binary caterpillar (a binary tree whose internal vertices form a path starting at the root) have the smallest and greatest Matula number, respectively, over all topological trees (rooted trees without vertices of outdegree 1) with a prescribed number of leaves – the extreme values are also derived.

Sean Cleary1, Roland Maio2
1Department of Mathematics, The City College of New York, Convent Ave. at 138th St, New York, NY 10031, USA.
2Department of Computer Science, Columbia University, 500 W 120th St., New York, NY 10027, USA.
Abstract:

Rotation distance between rooted binary trees is the minimum number of simple rotations needed to transform one tree into the other. Computing the rotation distance between a pair of rooted trees can be quickly reduced in cases where there is a common edge between the trees, or where a single rotation introduces a common edge. Tree pairs which do not have such a reduction are difficult tree pairs, where there is no generally known first step. Here, we describe efforts to count and estimate the number of such difficult tree pairs, and find that the fraction decreases exponentially fast toward zero. We also describe how knowing the number of distinct instances of the rotation distance problem is a helpful factor in making the computations more feasible.

Agha Kashif1, Zahid Raza2, Imran Anwar3
1Department of Mathematics, University of Management and Technology, Lahore, Pakistan.
2University of Sharjah, College of Sciences, Department of Mathematics, United Arab Emirates.
3Abdus Salam School of Mathematical Sciences, Government College University, Lahore, Pakistan.
Abstract:

In this paper, we characterize the set of spanning trees of \( G^1_{n,r} \) (a simple connected graph consisting of \( n \) edges, containing exactly one \textit{1-edge-connected chain} of \( r \) cycles \( C^1_r \) and \( G^1_{n,r} \), where \( C^1_r \) is a \textit{forest}). We compute the Hilbert series of the face ring \( k[\Delta_s(G^1_{n,r})] \) for the spanning simplicial complex \( \Delta_s(G^1_{n,r}) \). Also, we characterize associated primes of the facet ideal \( I_F(\Delta_s(G^1_{n,r})) \). Furthermore, we prove that the face ring \( k[\Delta_s(G^1_{n,r})] \) is Cohen-Macaulay.

M. Chellalil1, N. Jafari Rad2, S. M. Sheikholeslami3, L. Volkmann4
1LAMDA-RO Laboratory, Department of Mathematics University of Blida B.P. 270, Blida, Algeria
2Department of Mathematics, Shahed University, Tehran, Iran.
3Department of Mathematics Azerbaijan Shahid Madani University Tabriz, I.R. Iran
4Lehrstuhl II für Mathematik, RWTH Aachen, 52056 Aachen, Germany
Abstract:

Unlike undirected graphs where the concept of Roman domination has been studied very extensively over the past 15 years, Roman domination remains little studied in digraphs. However, the published works are quite varied and deal with different aspects of Roman domination, including for example, Roman bondage, Roman reinforcement, Roman dominating family of functions and the signed version of some Roman dominating functions. In this survey, we will explore some Roman domination related results on digraphs, some of which are extensions of well-known properties of the Roman domination parameters of undirected graphs.

Hongjuan Liu1, Zhen Wang1, Lidong Wang2
1Department of Computer Science and Engineering, Langfang Polytechnic Institute, Langfang 065000, P. R. China
2Department of Basic Courses, China People’s Police University, Langfang 065000, P. R. China
Abstract:

Let \( K_{g_1,g_2,\dots,g_n} \) be a complete \( n \)-partite graph with partite sets of sizes \( g_i \) for \( 1 \leq i \leq n \). A complete \( n \)-partite is balanced if each partite set has \( g \) vertices. In this paper, we will solve the problem of finding a maximum packing of the balanced complete \( n \)-partite graph, \( n \) even, with edge-disjoint 5-cycles when the leave is a 1-factor.

Lutz Volkmann1
1Lehrstuhl II für Mathematik RWTH Aachen University 52056 Aachen, Germany
Abstract:

A double Italian dominating function on a graph \( G \) with vertex set \( V(G) \) is defined as a function \( f : V(G) \to \{0,1,2,3\} \) such that each vertex \( u \in V(G) \) with \( f(u) \in \{0,1\} \) has the property that \( \sum_{x \in N[u]} f(x) \geq 3 \), where \( N[u] \) is the closed neighborhood of \( u \). A set \( \{f_1, f_2, \dots, f_d\} \) of distinct double Italian dominating functions on \( G \) with the property that \( \sum_{i=1}^{d} f_i(v) \leq 3 \) for each \( v \in V(G) \) is called a \textit{double Italian dominating family} (of functions) on \( G \). The maximum number of functions in a double Italian dominating family on \( G \) is the double Italian domatic number of \( G \), denoted by \( dd_I(G) \). We initiate the study of the double Italian domatic number, and we present different sharp bounds on \( dd_I(G) \). In addition, we determine the double Italian domatic number of some classes of graphs.

Aubrey Blecher1, Charlotte Brennan2, Arnold Knopfmacher2, Toufik Mansour3, Mark Shattuck4
1The John Knopfmacher Centre for Applicable Analysis and Number Theory, School of Mathematics University of the Witwatersrand Private Bag 3, Wits 2050, Johannesburg, South Africa
2The John Knopfmacher Centre for Applicable Analysis and Number Theory, School of Mathematics University of the Witwatersrand Private Bag 3, Wits 2050, Johannesburg, South Africa
3Department of Mathematics University of Haifa, 3498838 Haifa, Israel
4Department of Mathematics University of Tennessee, Knoxville, TN 37996, USA
Abstract:

We define the push statistic on permutations and multipermutations and use this to obtain various results measuring the degree to which an arbitrary permutation deviates from sorted order. We study the distribution on permutations for the statistic recording the length of the longest push and derive an explicit expression for its first moment and generating function. Several auxiliary concepts are also investigated. These include the number of cells that are not pushed; the number of cells that coincide before and after pushing (i.e., the fixed cells of a permutation); and finally the number of groups of adjacent columns of the same height that must be reordered at some point during the pushing process.

Marilyn Breen1
1The University of Oklahoma, Norman, Oklahoma 73019, USA
Abstract:

Let \( \mathcal{K} \) be a family of sets in \( \mathbb{R}^d \). For each countable subfamily \( \{K_m : m \geq 1\} \) of \( \mathcal{K} \), assume that \( \bigcap \{K_m : m \geq 1\} \) is consistent relative to staircase paths and starshaped via staircase paths, with a staircase kernel that contains a convex set of dimension \( d \). Then \( \bigcap \{K : K \in \mathcal{K} \} \) has these properties as well. For \( n \) fixed, \( n \geq 1 \), an analogous result holds for sets starshaped via staircase \( n \)-paths.

Hany Ibrahim1
1University of Applied Sciences Mittweida
Abstract:

We introduce a new bivariate polynomial which we call the defensive alliance polynomial and denote it by \( da(G; x, y) \). It is a generalization of the alliance polynomial [Carballosa et al., 2014] and the strong alliance polynomial [Carballosa et al., 2016]. We show the relation between \( da(G; x, y) \) and the alliance, the strong alliance, and the induced connected subgraph [Tittmann et al., 2011] polynomials. Then, we investigate information encoded in \( da(G; x, y) \) about \( G \). We discuss the defensive alliance polynomial for the path graphs, the cycle graphs, the star graphs, the double star graphs, the complete graphs, the complete bipartite graphs, the regular graphs, the wheel graphs, the open wheel graphs, the friendship graphs, the triangular book graphs, and the quadrilateral book graphs. Also, we prove that the above classes of graphs are characterized by its defensive alliance polynomial. A relation between induced subgraphs with order three and both subgraphs with order three and size three and two respectively, is proved to characterize the complete bipartite graphs. Finally, we present the defensive alliance polynomial of the graph formed by attaching a vertex to a complete graph. We show two pairs of graphs which are not characterized by the alliance polynomial but characterized by the defensive alliance polynomial.

E-mail Alert

Add your e-mail address to receive upcoming issues of Journal of Combinatorial Mathematics and Combinatorial Computing (JCMCC).

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;