Gaetano Quattrocchi1
1 Department of Mathematics and Informatics, University of Catania viale A. Doria, 6 95125 Catania, Italy
Abstract:

Let \(r(a)\) be the replication number of the vertex \(a\) of a path design \(P(v,k, 1)\), \(k \geq 3\). Let \(\bar{r}(v,k) = \text{min}\{\text{max}_{a\in V} \,r(a) | (V,\mathcal{B}) \text{ is a } P(v,k, 1)\}\). A path design \(P(v,k,1)\), \((W,\mathcal{D})\), is said to be \emph{almost balanced} if \(\bar{r}(v,k) – 1 \leq r(y) \leq \bar{r}(v,k)\) for each \(y \in W\). Let \(v \equiv 0 \text{ or } 1 \pmod{2(k-1)}\) (for each odd \(k\), \(k \geq 3\)) and let \(v_y \equiv 0 \text{ or } 1 \pmod{k-1}\) (for each even \(k\), \(k \geq 4\)). In this note, we determine the spectrum \(\mathcal{B}\mathcal{S}\mathcal{A}\mathcal{B}\mathcal{P}(v,k,1)\) of integers \(x\) such that there exists an almost balanced path design \(P(v,k, 1)\) with a blocking set of cardinality \(x\).

Frantigek Franék1, Shudi Gao2, Weilin Lu2, P. J. Ryan1, W. F. Smyth2,3, Yu Sun1, Lu Yang1
1 Algorithms Research Group, Department of Computing & Software McMaster University, Hamilton, Ontario, Canada L8S 4L7
2Algorithms Research Group, Department of Computing & Software McMaster University, Hamilton, Ontario, Canada L8S 4L7
3School of Computing, Curtin University, GPO Box U-1987 Perth WA 6845, Australia
Abstract:

A border of a string \(x\) is a proper (but possibly empty) prefix of \(x\) that is also a suffix of \(x\). The \emph{border array} \(\beta = \beta[1..n]\) of a string \(x = x[1..n]\) is an array of nonnegative integers in which each element \(\beta(i)\), \(1 \leq i \leq n\), is the length of the longest border of \(x[1..i]\). In this paper, we first present a simple linear-time algorithm to determine whether or not a given array \(y = y[1..n]\) of integers is a border array of some string on an alphabet of unbounded size, and then a slightly more complex linear-time algorithm for an alphabet of any given (bounded) size \(\alpha\). We then consider the problem of generating all possible distinct border arrays of given length \(n\) on a bounded or unbounded alphabet, and doing so in time proportional to the number of arrays generated. A previously published algorithm that claims to solve this problem in constant time per array generated is shown to be incorrect, and new algorithms are proposed. We conclude with an equally efficient on-line algorithm for this problem.

Peter J. Larcombe1
1 School of Computing and Technology University of Derby, Kedleston Road, Derby DE22 1GB, U.K.
Abstract:

In developing an observation made by the author concerning a class of expansions of the sine function, M. Xinrong has recently analysed the question of a generalised form through a succinct use of linear operator theory. This paper constitutes an extension of his work, in which the current problem is solved completely by examining the generating function of a finite sequence central to the formulation.

Stanislaw P. Radziszowski1, Kung-Kuen Tse1
1Department of Computer Science Department of Mathematics Rochester Institute of Technology Kean University Rochester, NY 14623 Union, NJ 07083
Abstract:

For graphs \(G\) and \(H\), the Ramsey number \(R(G, H)\) is the least integer \(n\) such that every 2-coloring of the edges of \(K_n\) contains a subgraph isomorphic to \(G\) in the first color or a subgraph isomorphic to \(H\) in the second color. Graph \(G\) is a \((C_4, K_n)\)-graph if \(G\) doesn’t contain a cycle \(C_4\) and \(G\) has no independent set of order \(n\). Jayawardene and Rousseau showed that \(21 \leq R(C_4, K_7) \leq 22\). In this work, we determine \(R(C_4, K_7) = 22\) and \(R(C_4, K_8) = 26\), and enumerate various families of \((C_4, K_n)\)-graphs. In particular, we construct all \((C_4, K_n)\)-graphs for \(n < 7\), and all \((C_4, K_n)\)-graphs on at least 19 vertices. Most of the results are based on computer algorithms.

Sin-Min Lee1, Henry Wong2
1San Jose State University San Jose, CA 95192, USA
2Hsing Wu Commerce College, Linkou, Taipei Republic of China
Abstract:

For \(\text{k}>0\), we call a graph G=(V,E) as \underline{\(\text{Z}_\text{k}\)-magic} if there exists an edge labeling \(\text{I: E(G)} \rightarrow \text{Z}_\text{k}^*\) such that the induced vertex set labeling \(\text{I}^+: \text{V(G)} \rightarrow \text{Z}_\text{k}\) defined by

\[\text{I}^+(\text{v}) = \Sigma \{(\text{I(u,v)) : (u,v)} \in \text{E(G)}\}\]

is a constant map. We denote the set of all k such that G is k-magic by IM(G). We call this set as the \textbf{integer-magic spectrum} of G. This paper deals with determining the integer-magic spectra of powers of paths \(\text{P}\text{n}^\text{k}\) for k=2 and 3. We also show that IM(\(\text{P}_{2\text{k}}^\text{k}) = \text{N}\setminus\{2\}\) for all odd integers \(\text{k}>1\). Finally, a conjecture for IM\((\text{P}_\text{n}^\text{k})\) for \(\text{k}\geq4\) is proposed.

Bor-Liang Chen1, Kuo-Ching Huang2, Sin-Min Lee3, Shi-Shan Liu 4
1Department of Mathematics, Taichung Technology University, Taichung, Taiwan.
2 Department of Applied Mathematics Providence University Shalu, Taichung, Taiwan
3Department of Mathematics and Computer Science San Jose State University, San Jose, CA 95192, U.S.A.
4Deparment of Mathematics, Inner Mongolia University Hoerhaote, Inner Mongolia, The People’s Republic of China
Abstract:

A new graph labeling problem on simple graphs called edge-balanced labeling is introduced by Kong and Lee [11]. They conjectured that all trees except \(K_{1,n}\) where \(n\) is odd, and all connected regular graphs except \(K_2\) are edge-balanced. In this paper, we extend the concept of edge-balanced labeling to multigraphs and completely characterize the edge-balanced multigraphs. Thus, we proved that the above two conjectures are true. A byproduct of this result is a proof that the problem of deciding whether a graph is edge-balanced does not belong to NP-hard.

Harold Bowman1, Michelle Schultz 1
1Department of Mathematical Sciences University of Nevada Las Vegas Las Vegas NV 89154-4020
Abstract:

Let \(\Gamma\) be a finite group and let \(X\) be a subset of \(\Gamma\) such that \(X^{-1} = X\) and \(1 \notin X\). The conjugacy graph \(\text{Con}(\Gamma; X)\) has vertex set \(\Gamma\) and two vertices \(g, h \in \Gamma\) are adjacent in \(\text{Con}(\Gamma; X)\) if and only if there exists \(x \in X\) with \(g = xhx^{-1}\). The components of a conjugacy graph partition the vertices into conjugacy classes (with respect to \(X\)) of the group. Sufficient conditions for a conjugacy graph to have either vertex-transitive or arc-transitive components are provided. It is also shown that every Cayley graph is the component of some conjugacy graph.

L.J. Cummings1
1Faculty of Mathematics University of Waterloo Waterloo, Ontario Canada N2L 3G1
Abstract:

By definition, the vertices of a de Bruijn graph are all strings of length \(n-1\) (\(n>1\)) over a fixed finite alphabet. The edges are all strings of length \(n\) over the same alphabet. The directed edge \(a_1\ldots a_n\) joins vertex \(a_1\ldots a_{n-1}\) to vertex \(a_2\ldots a_n\). A block code over an alphabet of \(\sigma\) elements is comma-free if it does not contain any overlap of codewords. Representing the codewords of comma-free codes as directed edges of the de Bruijn graph, we give sufficient conditions that a bipartite subgraph of the de Bruijn graph whose underlying undirected graph is connected is a comma-free code.

Wai Chee Shiu1, Peter Che Bor Lam 1, Sin-Min Lee 2
1Department of Mathematics, Hong Kong Baptist University Kowloon, Hong Kong.
2 Department of Mathematics and Computer Science, San José State University, San José, CA 95192, U.S.A.
Abstract:

Given two graphs \(G\) and \(H\), the composition of \(G\) with \(H\) is the graph with vertex set \(V(G) \times V(H)\) in which \((u_1, v_1)\) is adjacent to \((u_2, v_2)\) if and only if \(u_1u_2 \in E(G)\) or \(u_1 = u_2\) and \(v_1v_2 \in E(H)\). In this paper, we prove that the composition of a regular supermagic graph with a null graph is supermagic. With the help of this result, we show that the composition of a cycle with a null graph is always supermagic.

lliya Bluskov1
1 Department of Mathematics and Computer Science University of Northern British Columbia Prince George, B.C., Canada V2N 4Z9
Abstract:

In this paper, we discuss a self-adjusting and self-improving combinatorial optimization algorithm. Variations of this algorithm have been successfully applied in recent research in Design Theory. The approach is simple but general and can be applied in any instance of a combinatorial optimization problem.

E-mail Alert

Add your e-mail address to receive upcoming issues of Journal of Combinatorial Mathematics and Combinatorial Computing (JCMCC).

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;