
The cardinality of the minimal pairwise balanced designs on
In 1966, Wagner used computational search methods to construct a
A graph
This paper investigates
A defensive
Define a set
This is the first in a series of three papers in which we investigate a special class of designs that we designate as “Moore-Greig Designs”. The sobriquet is associated with the fact that ideas gleaned from two constructions, one due to E. H. Moore (1896) and the other due to M. Greig (2003), are combined to produce designs that have remarkable properties and features. A Moore-Greig Design is an RBIBD that contains, simultaneously, nested RBIBDs, nested GWhDs, many GWhDs, frames, nested frames, GWhFrames, nested GWhFrames, GWhaFrames, RRDFs, and nested RRDFs. All of these designs are Z-cyclic.
To be more precise, let
Other than a single published example, there is no literature pertaining to GWhDs. Therefore, the infinite classes of GWhDs constructed from the Moore-Greig Designs are the first general results related to this type of design. It is also believed that many of the other designs contained within the infinite classes of Moore-Greig designs are new.
In this paper, Part I, we provide detailed descriptions of both the Moore construction and the Greig construction. In the case of the Moore construction, we supply proofs since such proofs are lacking in Moore’s paper. Also included in this paper is a description of Moore-Greig Designs corresponding to
Anti-Pasch partial Steiner triple systems (anti-Pasch PSTSs) arise in erasure codes, extremal set systems, and combinatorial design theory. Maximal anti-Pasch PSTSs correspond to erasure-resilient codes that are used for handling failures in large disk arrays. These codes support the failure of any set of 3 disks and most sets of 4 disks while having the smallest possible update penalty and check-disk overhead.
In this article, we apply a general algorithm for isomorph-free exhaustive generation of incidence structures to the specific case of anti-Pasch PSTSs. We develop and implement a distributed version of the algorithm, which is experimentally analyzed. Using this implementation, we obtain a complete, isomorph-free catalogue of the maximal anti-Pasch PSTSs of order
Consider a lottery scheme consisting of randomly selecting a winning
In this paper, we consider the optimality of the 302 cardinality 7 (or less) lottery design listings in \verb”BELIC” R:
Then, an additional 429 upper bounds in the tables of Belic (not necessarily of cardinality 7 or less) are improved; 126 of which are optimal. Thus, apart from the 192 designs that we show to be optimal, 204 new lottery numbers are established in this paper, and a further 304 upper bounds are improved. Finally, the optimality of 54 designs of cardinality 7 or less could not be established; however, in each of these cases, a hitherto best known lower bound is provided.
For a simple graph
For a connected graph
An
Let
We study nega-cyclic
1970-2025 CP (Manitoba, Canada) unless otherwise stated.