Mostafa Blidia1, Rahma Lounes1, Mustapha Chellali1, Frédéric Maffray2
1LAMDA-RO Laboratory, Department of Mathematics, University of Blida, B.P. 270, Blida, Algeria.
2CNRS, Laboratoire G-SCOP, 46, avenue Félix Viallet, $803! Grenoble Cedex, France.
Abstract:

A set \(D\) of vertices in a graph \(G = (V, E)\) is a locating-dominating set if for every two vertices \(u, v\) in \(V \setminus D\), the sets \(N(u) \cap D\) and \(N(v) \cap D\) are non-empty and different. We establish two equivalent conditions for trees with unique minimum locating-dominating sets.

Abdollah Khodkar1, Kurt Vinhage2
1Department of Mathematics University of West Georgia Carrollton, GA 30118
2Department of Mathematics Florida State University Tallahassee, FL 32306
Abstract:

Let \( [n]^* \) denote the set of integers \(\{-\frac{n-1}{2}, \ldots, \frac{n-1}{2}\}\) if \(n\) is odd, and \(\{-\frac{n}{2}, \ldots, \frac{n}{2}\} \setminus \{0\}\) if \(n\) is even. A super edge-graceful labeling \(f\) of a graph \(G\) of order \(p\) and size \(q\) is a bijection \(f : E(G) \to [q]^*\), such that the induced vertex labeling \(f^*\) given by \(f^*(u) = \sum_{uv \in E(G)} f(uv)\) is a bijection \(f^* : V(G) \to [p]^*\). A graph is super edge-graceful if it has a super edge-graceful labeling. We prove that total stars and total cycles are super edge-graceful.

K. Reji Kumar1, Gary MaCgillivray2, R. B. BAPaT3
1Department of Mathematics N.S.S College, Pandalam – 689 501 India
2Department of Mathematics and Statistics University of Victoria, BC Canada
3Department of Mathematics Indian Statistical Institute New Delhi, India
Abstract:

A total dominating function (TDF) of a graph \( G = (V, E) \) is a function \( f : V \to [0,1] \) such that for all \( v \in V \), the sum of the function values over the open neighborhood of \( v \) is at least one. A minimal total dominating function (MTDF) \( f \) is a TDF such that \( f \) is not a TDF if the value of \( f(v) \) is decreased for any \( v \in V \). A convex combination of two MTDFs \( f \) and \( g \) of a graph \( G \) is given by \( h_\lambda = \lambda f + (1-\lambda)g \), where \( 0 < \lambda < 1 \). A basic minimal total dominating function (BMTDF) is an MTDF which cannot be expressed as a convex combination of two or more different MTDFs. In this paper, we study the structure of the set of all minimal total dominating functions (\(\mathfrak{F}_T\)) of some classes of graphs and characterize the graphs having \(\mathfrak{F}_T\) isomorphic to one simplex.

Terry A. McKee1
1Department of Mathematics & Statistics Wright State University, Dayton, Ohio 45435 USA
Abstract:

Vertex elimination orderings play a central role in many portions of graph theory and are exemplified by the so-called `perfect elimination orderings’ of chordal graphs. But perfect elimination orderings and chordal graphs enjoy many special advantages that overlap in more general settings: the random way that simplicial vertices can be chosen, always having a choice of simplicial vertices, the hereditary nature of being simplicial, and the neutral effect of deleting a simplicial vertex on whether the graph is chordal. A graph meta

M. A. Seoud1, E. F. Helmi1
1Department of Mathematics, Faculty of Science . Ain Shams University, Abhbassia . Cairo, Egypt.
Abstract:

In this paper we give a survey of all graphs of order \(\leq 5\) which are difference graphs and we show that some families of graphs are difference graphs.

Jerzy Wojciechowski1
1Department of Mathematics West Virginia University Morgantown, Wv 26506-6310
Abstract:

The edge-bandwidth of a graph \( G \) is the smallest number \( b \) for which there exists an injective labeling of \( E(G) \) with integers such that the difference between the labels of any pair of adjacent edges is at most \( b \). The edge-bandwidth of a torus (a product of two cycles) has been computed within an additive error of \( 5 \). In this paper, we improve the upper bound, reducing the error to \( 3 \).

Ryan Jones1, Kyle Kolasinski1, Futaba Okamoto2, Ping Zhang1
1Department of Mathematics Western Michigan University
2Mathematics Department University of Wisconsin – La Crosse
Abstract:

Let \( G \) be a connected graph of order 3 or more and \( c : E(G) \to \mathbb{Z}_k \) (\( k \geq 2 \)) an edge coloring of \( G \) where adjacent edges may be colored the same. The color sum \( s(v) \) of a vertex \( v \) of \( G \) is the sum in \( \mathbb{Z}_k \) of the colors of the edges incident with \( v \). An edge coloring \( c \) is a modular neighbor-distinguishing \( k \)-edge coloring of \( G \) if \( s(u) \neq s(v) \) in \( \mathbb{Z}_k \) for all pairs \( u, v \) of adjacent vertices of \( G \). The modular chromatic index \( \chi_m'(G) \) of \( G \) is the minimum \( k \) for which \( G \) has a modular neighbor-distinguishing \( k \)-edge coloring. For every graph \( G \), it follows that \( \chi_m'(G) \geq \chi(G) \). In particular, it is shown that if \( G \) is a graph with \( \chi(G) \equiv 2 \mod 4 \) for which every proper \( \chi(G) \)-coloring of \( G \) results in color classes of odd size, then \( \chi_m'(G) > \chi(G) \). The modular chromatic indices of several well-known classes of graphs are determined. It is shown that if \( G \) is a connected bipartite graph, then \( 2 \leq \chi_m'(G) \leq 3 \) and it is determined when each of these two values occurs. There is a discussion on the relationship between \( \chi_m'(G) \) and \( \chi_m'(H) \) when \( H \) is a subgraph of \( G \).

Abdollah Khodkar1
1Department of Mathematics University of West Georgia Carrollton, GA 30118
Abstract:

Let \( [n]^* \) denote the set of integers \(\{-\frac{n-1}{2}, \ldots, \frac{n+1}{2}\}\) if \( n \) is odd, and \(\{-\frac{n}{2}, \ldots, \frac{n}{2}\} \setminus \{0\}\) if \( n \) is even. A super edge-graceful labeling \( f \) of a graph \( G \) of order \( p \) and size \( q \) is a bijection \( f : E(G) \to [q]^* \), such that the induced vertex labeling \( f^* \) given by \( f^*(u) = \sum_{uv \in E(G)} f(uv) \) is a bijection \( f^* : V(G) \to [p]^* \). A graph is super edge-graceful if it has a super edge-graceful labeling. We prove that all complete tripartite graphs \( K_{a,b,c} \), except \( K_{1,1,2} \), are super edge-graceful.

Maged Z. Youssef 1, Naseam A. AL-Kuleab2
1Department of Mathematics, Faculty of Science, Ain Shams University, Abbassia 11566, Cairo, Egypt
2Department of Mathematics, Faculty of Science, King Faisal University, Al-Hasa, Kingdom of Saudi Arabia
Abstract:

Suppose \( G \) is a graph with vertex set \( V(G) \) and edge set \( E(G) \), and let \( A \) be an additive Abelian group. A vertex labeling \( f: V(G) \to A \) induces an edge labeling \( f^*: E(G) \to A \) defined by \( f^*(xy) = f(x) + f(y) \). For \( a \in A \), let \( n_a(f) \) and \( m_a(f) \) be the number of vertices \( v \) and edges \( e \) with \( f(v) = a \) and \( f^*(e) = a \), respectively. A graph \( G \) is \( A \)-cordial if there exists a vertex labeling \( f \) such that \( |n_a(f) – n_b(f)| \leq 1 \) and \( |m_a(f) – m_b(f)| \leq 1 \) for all \( a, b \in A \). When \( A = \mathbb{Z}_k \), we say that \( G \) is \( k \)-cordial instead of \( \mathbb{Z}_k \)-cordial. In this paper, we investigate certain regular graphs and ladder graphs that are \( 4 \)-cordial and we give a complete characterization of the \( 4 \)-cordiality of the complete \( 4 \)-partite graph. An open problem about which complete multipartite graphs are not \( 4 \)-cordial is given.

Abstract:

The square \( G^2 \) of a graph \( G \) is a graph with the same vertex set as \( G \) in which two vertices are joined by an edge if their distance in \( G \) is at most two. For a graph \( G \), \( \chi(G^2) \), which is also known as the distance two coloring number of \( G \), is studied. We study coloring the square of grids \( P_m \Box P_n \), cylinders \( P_m \Box C_n \), and tori \( C_m \Box C_n \). For each \( m \) and \( n \) we determine \( \chi((P_m \Box P_n)^2) \), \( \chi((P_m \Box C_n)^2) \), and in some cases \( \chi((C_m \Box C_n)^2) \) while giving sharp bounds to the latter. We show that \( \chi((C_m \Box C_n)^2) \) is at most \( 8 \) except when \( m = n = 3 \), in which case the value is \( 9 \). Moreover, we conjecture that for every \( m \) (\( m \geq 5 \)) and \( n \) (\( n \geq 5 \)), we have \( 5 \leq \chi((C_m \Box C_n)^2) \leq 7 \).

E-mail Alert

Add your e-mail address to receive upcoming issues of Journal of Combinatorial Mathematics and Combinatorial Computing (JCMCC).

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;