Shannon Overbay1
1Department of Mathematics Gonzaga University, Spokane, WA, USA
Abstract:

In the classical book embedding problem, a \( k \)-book is defined to be a line \( L \) in \( 3 \)-space (the spine) together with \( k \) half-planes (the pages) joined together at \( L \). We introduce two variations on the classical book in which edges are allowed to wrap in either one or two directions. The first is a cylindrical book where the spine is a line \( L \) in \( 3 \)-space and the pages are nested cylindrical shells joined together at \( L \). The second is a torus book where the spine is the inner equator of a torus and the pages are nested torus shells joined together at this equator. We give optimal edge bounds for embeddings of finite simple graphs in cylinder and torus books and give best-possible embeddings of \( K_n \) in torus books. We also compare both books with the classical book.

Atif A. Abueida1, Courtney Perkinst1
1Department of Mathematics University of Dayton 300 College Park Dayton, OH 45469-2316
Abstract:

We give necessary and sufficient conditions for the decomposition of the complete graphs with multiple holes, \( K_n \setminus hK_v \), into the graph-pair of order \( 4 \).

Abstract:

A vertex cover of a graph \( G = (V, E) \) is a subset \( S \subseteq V \) such that every edge is incident with at least one vertex in \( S \), and \( \alpha(G) \) is the cardinality of a smallest vertex cover. Let \( \mathcal{T} \) be a collection of vertex covers, not necessarily minimum. We say \( \mathcal{T} \) is closed if for every \( S \in \mathcal{T} \) and every \( e \in E \) there is a one-to-one function \( f : S \to V \) such that

  1. \( f(S) \) is a vertex cover,
  2. for some \( s \in S \), \( \{s, f(s)\} = e \),
  3. for each \( s \) in \( S \), either \( s = f(s) \) or \( s \) is adjacent to \( f(s) \),
  4. \item \( f(S) \in \mathcal{T} \).

A set is an eternal vertex cover if and only if it is a member of some closed family of vertex covers. The cardinality of a smallest eternal vertex cover is denoted \( \alpha_m^\infty(G) \). Eternal total vertex covers are defined similarly, with the restriction that the cover must also be a total dominating set. The cardinality of a smallest eternal total vertex cover is denoted \( \alpha_{mt}^\infty(G) \). These three vertex cover parameters satisfy the relation

\[
\alpha(G) \leq \alpha_{m}^\infty(G) \leq \alpha_{mt}^\infty(G) \leq 2\alpha(G).
\]

We define a triple \( (p, q, r) \) of positive integers such that \( p \leq q \leq r \leq 2p \) to be feasible if there is a connected graph \( G \) such that \( \alpha(G) = p \), \( \alpha_{m}^\infty(G) = q \), and \( \alpha_{mt}^\infty(G) = r \). This paper shows all triples with the above restrictions are feasible if \( p \neq q \) or \( r \leq \frac{3p}{2} \) and conjectures that there are no feasible triples of the form \( (p, p, r) \) with \( r > \frac{3p}{2} \). The graphs with triple \( (p, p + 1, 2p) \) are characterized and issues related to the conjecture are discussed.

M. Mohammad-Noori 1,2
1Department of Mothematics, Statistics and Computer Science, University of Tehran, P.O. Boz 14155-6455, Tehran, fran
2School of Computer Science, Institute for Research in Fundamental Sciences (IPM), P.O. Box: 19395-5746, Tehran, fran
Abstract:

We study the area distribution of closed walks of length \( n \), starting and ending at the origin. The concept of algebraic area of a walk in the square lattice is slightly modified and the usefulness of this concept is demonstrated through a simple argument. The idea of using a generating function of the form \( (x + x^{-1} + y + y^{-1})^n \) to study these walks is then discussed from a special viewpoint. Based on this, a polynomial time algorithm for calculating the exact distribution of such walks for a given length is concluded. The presented algorithm takes advantage of the Chinese remainder theorem to overcome the problem of arithmetic with large integers. Finally, the results of the implementation are given for \( n = 32, 64, 128 \).

Guodong Liu1, Jing Xu1
1College of Computer and Control Engineering Nankai University, Tianjin 300071, China
Abstract:

The Wiener polarity index of a graph \( G \) is the number of unordered pairs of vertices \( u, v \) such that the distance between \( u \) and \( v \) is three, which was introduced by Harold Wiener in 1947. A linear time algorithm for computing the Wiener polarity index of trees was described, and also an algorithm which computes the index \( W_p(G) \) for any given connected graph \( G \) on \( n \) vertices in time \( O(M(n)) \) was presented, where \( M(n) \) denotes the time necessary to multiply two \( n \times n \) matrices of small integers (which is currently known to be \( O(n^{2.376}) \)). In this paper, we establish one polynomial algorithm to calculate the value of the Wiener polarity index of a bipartite graph.

Amy Baer1, Brenda Johnson Mammenga2, Christopher Spicer2
1Morningside College Sioux City, IA 51106
2Department of Mathematical Sciences Morningside College Sioux City, IA 51106
Abstract:

Rado numbers are closely related to Ramsey numbers, but pertaining to equations and integers instead of cliques within graphs. For every integer \( m \geq 3 \) and every integer \( c \), let the 2-color Rado number \( r(m,c) \) be the least integer, if it exists, such that for every 2-coloring of the set \( \{1,2,\ldots,r(m,c)\} \) there exists a monochromatic solution to the equation

\[
\sum_{i=1}^{m-1} x_i + c = x_m
\]

The values of \( r(m,c) \) have been determined previously for nonnegative values of \( c \), as well as all values of \( m \) and \( c \) such that \( -m+2 < c < 0 \) and \( c < -(m-1)(m-2) \). In this paper, we find \( r(m,c) \) for the remaining values of \( m \) and \( c \).

Elie Feder1, David Garber2
1Kingsborough Community College of CUNY, Department of Mathematics and Computer Science, 2001 Oriental Blvd., Brooklyn, NY 11235, USA
2Department of Applied Mathematics, Faculty of Sciences, Holon Institute of Technology, 52 Golomb St., PO Box 305, Holon 58102, Israel and (Sabbatical:) Einstein Institute of Mathematics, Hebrew University of Jerusalem, Jerusalem, Israel
Abstract:

This paper deals with the Orchard crossing number of some families of graphs which are based on cycles. These include disjoint cycles, cycles which share a vertex and cycles which share an edge. Specifically, we focus on the prism and ladder graphs.

Wei Gao1, Tianwei Xu1, Li Liang1, Juxiang Zhou2
1School of Information Science and Technology, Yunnan Normal University, Kunming 650500, China
2Key Laboratory of Educational Informatization for Nationalities, Ministry of Education, Yunnan Normal University, Kunming 650500, China
Abstract:

Let \(i(G)\) be the number of isolated vertices in graph \(G\). The isolated toughness of \(G\) is defined as \(I(G) = +\infty\) if \(G\) is complete; \(I(G) = \text{min}\{|S|/i(G-S) : S \subseteq V(G), i(G-S) \geq 2\}\) otherwise. In this paper, we determine that \(G\) is a fractional \((g, f, n)\)-critical graph if \(I(G) \geq \frac{b^2 + bn – 1}{a}\) if \(b > a\); \(I(G) \geq b + n\) if \(a = b\).

Marilyn Breen1
1The University of Oklahoma, Norman, Oklahoma 73019 U.S.A.
Abstract:

Let \(\mathcal{C}\) be a finite family of boxes in \(\mathbb{R}^d\), \(d \geq 3\), with \(S = \cup\{C : C \in \mathcal{C}\}\) connected and \(p \in S\). Assume that, for every geodesic chain \(D\) of \(\mathcal{C}\)-boxes containing \(p\), each coordinate projection \(\pi(D)\) of \(D\) is staircase starshaped with \(\pi(p) \in \text{Ker}\ \pi(D)\). Then \(S\) is staircase starshaped and \(p \in \text{Ker}\ S\). For \(n\) fixed, \(1 \leq n \leq d-2\), an analogous result holds for composites of \(n\) coordinate projections of \(D\) into \((d-n)\)-dimensional flats.

Michael Yatauro1
1Penn State-Lehigh Valley Center Valley, PA 18034, U.S.A.
Abstract:

Let \( T(G) \) and \(\text{bind}(G)\) be the tenacity and the binding number, respectively, of a graph \( G \). The inequality \( T(G) \geq \text{bind}(G) – 1 \) was derived by D. Moazzami in [11]. In this paper, we provide a stronger lower bound on \( T(G) \) that is best possible when \(\text{bind}(G) \geq 1\).

Mingjin Wang1
1Department of Applied Mathematics, Changzhou University, Changzhou, Jiangsu, 213164, P.R China
Abstract:

In this paper, we give a new look at Sears’ \({}_{3}\phi_{2}\) transformation formula via a discrete random variable. This interpretation may provide a method to calculate \({}_{3}\phi_{2}\) by Monte Carlo experiments.

A.J. Geyer1, D.A. Bulutoglu2, S.J. Rosenberg3
1Air Force Institute of Technology/ENC, 2950 Hobson Way WPAFB, OH 45438-7765.
2Air Force Institute of Technology/ENC, 2950 Hobson Way WPAFB, OH 45433-7765.
3Mathematics and Computer Science Department, University of Wisconsin Superior, Swenson Hall 3023, Belknap and Catlin P.O. Box 2000 Superior, WI 54880.
Abstract:

Symmetry plays a fundamental role in the design of experiments. In particular, symmetries of factorial designs that preserve their statistical properties are exploited to find designs with the best statistical properties. By using a result proved by Rosenberg [1], the concept of the LP relaxation orthogonal array polytope is developed and studied. A complete characterization of the permutation symmetry group of this polytope is made. Also, this characterization is verified computationally for many cases. Finally, a proof is provided.

T. Tamizh Chelvam1, K. Selvakumar1
1Department of Mathematics Manonmaniam Sundaranar University Tirunelveli 627 012, India.
Abstract:

Let \( R \) be a noncommutative ring with identity and \( Z(R)^* \) be the non-zero zero-divisors of \( R \). The directed zero-divisor graph \(\Gamma(R)\) of \( R \) is a directed graph with vertex set \( Z(R)^* \) and for distinct vertices \( x \) and \( y \) of \( Z(R)^* \), there is a directed edge from \( x \) to \( y \) if and only if \( xy = 0 \) in \( R \). S.P. Redmond has proved that for a finite commutative ring \( R \), if \(\Gamma(R)\) is not a star graph, then the domination number of the zero-divisor graph \(\Gamma(R)\) equals the number of distinct maximal ideals of \( R \). In this paper, we prove that such a result is true for the noncommutative ring \( M_2(\mathbb{F}) \), where \(\mathbb{F}\) is a finite field. Using this, we obtain a class of graphs for which all six fundamental domination parameters are equal.

Sarah Spence Adams1, Elsa Culler2, Mathav Kishore Murugan3, Connor Stokes2, Steven Zhang2
1Corresponding Author, Franklin W. Olin College of Engineering, 1600 Olin Way, Needham, MA 02492, USA
2Franklin W. Olin College of Engineering
3This author was with the Indian Institute of Technology in Kharag- pur, India; he is currently with Cornell University
Abstract:

Multilevel Hadamard matrices (MHMs), whose entries are integers as opposed to the traditional restriction to \(\{\pm 1\}\), have been introduced as a way to construct multilevel zero-correlation zone sequences for use in approximately synchronized code division multiple access (AS-CDMA) systems. This paper provides a construction technique to produce \(2^m \times 2^m\) MHMs whose \(2^m\) alphabet entries form an arithmetic progression, up to sign. This construction improves upon existing constructions because it permits control over the spacing and overall span of the MHM entries. MHMs with such regular alphabets are a more direct generalization of traditional Hadamard matrices and are thus expected to be more useful in applications analogous to those of Hadamard matrices. This paper also introduces mixed-circulant MHMs which provide a certain advantage over known circulant MHMs of the same size.

MHMs over the Gaussian (complex) and Hamiltonian (quaternion) integers are introduced. Several constructions are provided, including a generalization of the arithmetic progression construction for MHMs over real integers. Other constructions utilize amicable pairs of MHMs and c-MHMs, which are introduced as natural generalizations of amicable orthogonal designs and c-Hadamard matrices, respectively. The constructions are evaluated against proposed criteria for interesting and useful MHMs over these generalized alphabets.

M. Alib1,2, M. T. Rahim1, G. Ali1
1Department of Mathematics, National University of Computer, & Emerging Sciences, FAST, Peshawar, Pakistan.
2Department of Mathematics University of Liverpool, UK,
Abstract:

A family \(\mathcal{G}\) of connected graphs is a family with constant metric dimension if \(\text{dim}(G)\) is finite and does not depend upon the choice of \(G\) in \(\mathcal{G}\). In this paper, we show that the sunlet graphs, the rising sun graphs, and the co-rising sun graphs have constant metric dimension.

Xiaodong Xu1, Meilian Liang2, Zehui Shao3
1Guangxi Academy of Sciences Nanning 530007, China
2School of Mathematics and Information Science Guangxi University, Nanning 530004, China
3Key Laboratory of Pattern Recognition and Intelligent Information Processing, Institutions of Higher Education of Sichuan Province, China; School of Information Science & Technology Chengdu University, Chengdu 610106, China
Abstract:

A sequence \(\{a_i : 1 \leq i \leq k\}\) of integers is a weak Sidon sequence if the sums \(a_i + a_j\) are all different for any \(i < j\). Let \(g(n)\) denote the maximum integer \(k\) for which there exists a weak Sidon sequence \(\{a_i : 1 \leq i \leq k\}\) such that \(1 \leq a_1 < \cdots < a_k \leq n\). Let the weak Sidon number \(G(k) = \text{min}\{n \mid g(n) = k\}\). In this note, \(g(n)\) and \(G(k)\) are studied, and \(g(n)\) is computed for \(n \leq 172\), based on which the weak Sidon number \(G(k)\) is determined for up to \(k = 17\).

No authors found.
Abstract:

In this paper, we show that there exist all admissible 4-GDDs of type \(g^6m^1\) for \(g \equiv 0 \pmod{6}\). For 4-GDDs of type \(g^u m^1\), where \(g\) is a multiple of 12, the most values of \(m\) are determined. Particularly, all spectra of 4-GDDs of type \(g^um^1\) are attained, where \(g\) is a multiple of 24 or 36. Furthermore, we show that all 4-GDDs of type \(g^um^1\) exist for \(g = 10, 20, 28, 84\) with some possible exceptions.

Chunhui Lai1, Mingjing Liu1
1Department of Mathematics and Information Science, Zhangzhou Normal University, Zhangzhou, Fujian 363000, CHINA.
Abstract:

Let \( f(n) \) be the maximum number of edges in a graph on \( n \) vertices in which no two cycles have the same length. Erdős raised the problem of determining \( f(n) \). Erdős conjectured that there exists a positive constant \( c \) such that \( ex(n, C_{2k}) \geq cn^{1+\frac{1}{k}} \). Hajós conjectured that every simple even graph on \( n \) vertices can be decomposed into at most \(\frac{n}{2}\) cycles. We present the problems, conjectures related to these problems, and we summarize the known results. We do not think Hajós’ conjecture is true.

William F. Klostermeyert1, Gary MacGillivray2
1School of Computing University of North Florida Jacksonville, FL 32224-2669
2Dept. of Mathematics and Statistics University of Victoria Victoria, Canada
Abstract:

Mobile guards on the vertices of a graph are used to defend the graph against an infinite sequence of attacks on vertices. A guard must move from a neighboring vertex to an attacked vertex (we assume attacks happen only at vertices containing no guard). More than one guard is allowed to move in response to an attack. The \( m \)-eternal domination number is the minimum number of guards needed to defend the graph. We characterize the trees achieving several upper and lower bounds on the \( m \)-eternal domination number.

Marcus Bartlett1, Elliot Krop2, Colton Magnant3, Fedelis Mutiso4, Hua Wang5
1Department of Mathematics, Clayton State University, Morrow, GA 30260, USA
2Department of Mathematics, Clayton State University, Mor- Row, GA 30260, USA
3Department of Mathematical Sciences, Georgia Southern University, Stateshoro, GA 30460, USA
4Department of Mathematical Sciences, Georgia Southern University, Statesboro, GA 30460, USA
5Department of Mathematical Sciences, Georgia Southern Uni- Versity, Statesboro, GA 30460, USA
Abstract:

Introduced in 1947, the Wiener index (sum of distances between all pairs of vertices) is one of the most studied chemical indices. Extensive results regarding the extremal structure of the Wiener index exist in the literature. More recently, the Gamma index (also called the Terminal Wiener index) was introduced as the sum of all distances between pairs of leaves. It is known that these two indices coincide in their extremal structures and that a nice functional relation exists for \(k\)-ary trees but not in general. In this note, we consider two natural extensions of these concepts, namely the sum of all distances between internal vertices (the Spinal index) and the sum of all distances between internal vertices and leaves (the Bartlett index). We first provide a characterization of the extremal trees of the Spinal index under various constraints. Then, its relation with the Wiener index and Gamma index is studied. The functional relation for \(k\)-ary trees also implies a similar result on the Bartlett index.

Xin Xie1, Jun-Ming Xu2
1School of Mathematics and Statistics, Huangshan University Huangshan, 245041, China
2Department of Mathematics, University of Science and Technology of China Hefei, 230026, China
Abstract:

For an \( n \)-connected graph \( G \), the \( n \)-wide diameter \( d_n(G) \) is the minimum integer \( m \) such that for any two vertices \( x \) and \( y \) there are at least \( n \) internally disjoint paths of length at most \( m \) from \( x \) to \( y \). For a given integer \( l \), a subset \( S \) of \( V(G) \) is called a \( (l,n) \)-dominating set of \( G \) if for any vertex \( x \in V(G) – S \) there are at least \( n \) internally disjoint paths of length at most \( l \) from \( S \) to \( x \). The minimum cardinality among all \( (l,n) \)-dominating sets of \( G \) is called the \( (l,n) \)-domination number. In this paper, we obtain that the \( (l,\omega) \)-domination numbers of the circulant digraph \( G(d^n; \{1, d, \ldots, d^{n-1}\}) \) is equal to 2 for \( 1 \leq \omega \leq n \) and \( d_\omega(G) – (g(d,n) + \delta) \leq l \leq d_\omega(G) – 1 \), where \( g(d,n) = \text{min} \{e\lceil \frac{n}{2} \rceil – e – 2, (\lfloor \frac{n}{2} \rfloor + 1)(e – 1) – 2\} \), \( \delta = 0 \) for \( 1 \leq \omega \leq n – 1 \) and \( \delta = 1 \) for \( \omega = n \).

E-mail Alert

Add your e-mail address to receive upcoming issues of Journal of Combinatorial Mathematics and Combinatorial Computing (JCMCC).

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;