Let \(G\) be a finite and simple graph with vertex set \(V(G)\). A nonnegative signed Roman dominating function (NNSRDF) on a graph \(G\) is a function \(f:V(G)\to \{-1,1,2\}\) satisfying the conditions that (i) \(\sum_{x\in N[v]}f(x)\ge 0\) for each \(v \in V(G)\), where \(N[v]\) is the closed neighborhood of \(v\) and (ii)every vertex u for which \(f(u)=-1\) has a neighbor v for which \(f(v)=2\). The weight of an NNSRDF \(f\) is \(\omega(f) = \sum_{v\in V(G)} f(v)\). The nonnegative signed Roman domination number \(\gamma_{sR}^{NN} (G)\) of \(G\) is the minimum weight of an NNSRDF \(G\) In this paper, we initiate the study of the nonnegative signed Roman domination number of a graph and we present different bounds on \(\gamma _{sR}^{NN}(G) \ge (8n-12m)/7\). In addition, if \(G\) is a bipartite graph of order \(n\), then we prove that \(\gamma _{sR}^{NN}(G) \ge^\frac{3}{2}(\sqrt{4n+9}-3)-n\), and we characterize the external graphs.
We consider inverse-conjugate compositions of a positive integer \(n\) in which the parts belong to the residue class of 1 modulo an integer \(m > 0\). It is proved that such compositions exist only for values of \(n\) that belong to the residue class of 1 modulo 2m. An enumerations results is provided using the properties of inverse-conjugate compositions. This work extends recent results for inverse-conjugate compositions with odd parts.
For a graph \(G\) and positive integers \(a_1,…,a_r,\) if every r-coloring of vertics V(G) must result in a monochromatic \(a_1\)-clique of color \(i\) for some \(i \in \{1,…,r\},\) then we write \(G \to (a_1,..a_r)^v\).\(F_v(K_a1,…,K_ar;H)\) is the smallest integer \(n\) such that there is an H-free graph \(G\) of order \(n\), and \(G \to (a_1,…,a_r)^v\). In this paper we study upper and lower bounds for some generalized vertex Folkman numbers of from \(F_v(K_{a1},…,K_{ar};K_4 – e)\), where \(r \in {2,3}\) and \(a_1 \in {2,3}\) for 10 and \(F_v(K_2,K_3;K_4 – e) = 19\) by computing, and prove \(F_v(K_3,K_3;K_4 – e)\ge F_v(K_2,K_2,K_3;K_4 – e)\ge 25\)
We study the complexity of four decision problems dealing with the uniqueness of a solution in a graph: “Uniqueness of a Vertex Cover with bounded size” (U-VC) and “Uniqueness of an Optimal Vertex Cover” (U-OVC), and for any fixed integer \(r \ge 1,\) “Uniqueness of an \(r\)-Dominating Code with bounded size” \((U-DC_r)\) and “Uniqueness of an Optimal \(r\)-Dominating Code” \((U-ODC_r\). In particular, we give a polynomial reduction from “Unique Satisfiability of a Boolean formula” (U-SAT) to U-OVC, and from U-SAT to U-ODC, We prove that U-VC and \(U-DC_r\) have complexity equivalent to that of U-SAT (up to polynomials); consequently, these problems are all \(NP\)-hard, and U-VC and \(U-DC_r\) belong to the class \(DP\).
Let \(D\) be a finite and simple digraph with vertex set \(V(D)\). A signed total Roman dominating function on the digraph \(D\) is a function \(f : V(D)\longrightarrow{-1,1,2}\) \(\sum_{u\in N-(v)} f(u)\ge 1\) for every \(v\in V(D)\), where \(N^{-}(v)\) consists of all inner neighbors of \(v\) for dominating function on \(D\) with the property that \(\sum_{d}^{i=1}f_i(v)\le 1\) for each \(v \in V (D)\) is called a signed total roman dominating family (of functions) on \(D\). The maximum number of functions in a signed total roman dominating family on \(D\)is the signed total Roman domatic number of \(D\). denoted by \(d_{stR}(D)\). In addition, we determine the signed total Roman domatic number of some digraphs. Some of our results are extensions of well-known properties of the signed total Roman domatic of graphs.
Let \(G = (V,E)\) be a graph. The transitivity of a graph \(G\), denoted \(Tr(G)\), equals the maximum order \(k\) of a partition \(\pi = \{V_1,V_2,…,V_k\}\) of \(V\) such that for r=every \(i,j,1\le i < j \le k, V_i\) dominates \(V_j\). We consider the transitivity in many special classes of graphs, including cactus graphs, coronas, Cartesian products, and joins. We also consider the effects of vertex or edge deletion and edge addition on the transivity of a graph.
We dedicate this paper to the memory of professor Bohdan Zelinka for his pioneering work on domative of graphs.
The n-dimensional enhanced hypercube \(Q_{n,k}(1 \leq k \leq n-1 )\) is one of the most attractive interconnection networks for parallel and distributed computing system. Let \(H\) be a certain particular connected subgraph of graph \(G\). The \(H\)-structure-connectivity of \(G\), denoted by \(\kappa (G;H),\) is the cardinality of minimal set of subgraphs \(F=\{H_1,H_2,…,H_m\}\) in \(G\) such that every \(H_i\in F\) is isomprphic to \(H\) and \(G-F\) is disconnected. The \(H\)-substructure-connectivity of \(G\), denoted by \(_k^3(G;H)\), is the cardinality of minimal set of subgraphs \(F={H_1,H_2,…,H_m}\) in \(G\) such that every \(H_i\in F\) is isomorphic to a connected subgraph \(H\) , and \(G-F\) is disconnected. Using the structural properties of \(Q_{n,k}\) the \(H\)-structure-connectivity \(\kappa (Q_{n,k};H)\) were determine for \(H \in \{K_1,K_{1,1},K_{1,2},K_{1,3}\}\).
In this paper, we characterize the set of spanning trees of \(G^1_{n,r}\) (a simple connected graph consisting of \(n\) edges, containing exactly one 1-edge-connected chain of \(r\) cycles \(\mathbb{C}^1_r\) and \(G^1_{n,r}\ \mathbb{C}^1_r\) is a forest). We compute the Hilbert series of the face ring \(k[\Delta_s(G^1_{n,r})]\) for the spanning simplicial complex \(\Delta_s (G^1_{n,r})\). Also, we characterize associated primes of the facet ideal \(I_{\mathcal{F}}(\Delta_s(G^1_{n,r})\). Furthermore, we prove that the face ring \(k[\Delta_s(G^1_{n,r})]\) is Cohen-Macaulay.
We establish formulas for the number of all downsets (or equivalently, of all antichains) of a finite poset \(P\). Then, using these numbers, we determine recursively and explicitly the number of all posets having a fixed set of minimal points and inducing the poset \(P\) on the non-minimal points. It turns out that these counting functions are closely related to a collection of downset numbers of certain subposets. Since any function ar that kind is an exponential sum (with the number of minimal points as exponents), we call it the exponential function of the poset. Some linear equalities, divisibility relations, upper and lower bounds. A list of all such exponential functions for posets with up to five points concludes the paper.
The energy of a graph is defined as the sum of the absolute values of the eigenvalues of its adjacency matrix. The first Zagreb index of a graph is defined as the sum of squares of the degrees of the vertices of the graph. The second Zagreb index of a graph is defined as the sum of products of the degrees of a pairs of the adjacent vertices of the graph. In this paper, we establish some sufficient conditions for a nearly balanced bipartite graph with large minimum degree to be traceable in terms of the energy, the first Zagreb index and the second Zagreb index of the quasi-complement of the graph, respectively.