Peter Horak1, Salem Al Yakoob 1
1Department of Mathematics and Computer Science Kuwait: University, P.O.Box 5969 Safat 13060, Kuwait
Abstract:

We give a necessary and sufficient condition of Hall’s type for a family of sets of even cardinality to be decomposable into two subfamilies having a common system of distinct representatives. An application of this result to partitions of Steiner Triple Systems into small configurations is presented.

Peter Adams1, Elizabeth J. Billington1, C.C. Lindner 2
1 Centre for Discrete Mathematics and Computing, Department of Mathematics, The University of Queensland, Queensland 4072 Australia
2Department of Discrete and Statistical Sciences 120 Math Annex Auburn University Auburn Alabama 36849-5307 U.S.A.
Abstract:

In this paper, we construct 2-factorizations of \(K_n\) (\(n\) odd) containing a specified number, \(k\), of 6-cycles, for all integers \(k\) between 0 and the maximum possible expected number of 6-cycles in any 2-factorization, and for all odd \(n\), with no exceptions.

Martin BACA 1, Yuqing LIN 2, Mirka MILLER 3
1 Department of Applied Mathematics Technical University, Kogice, Slovak Republic
2 Department of Computer Science and Software Engineering The University of Newcastle, Australia
3Department of Computer Science and Software Engineering The University of Newcastle, Australia
Abstract:

We deal with \((a,d)\)-face antimagic labelings of a certain class of plane quartic graphs. A connected plane graph \(G = (V, E, F)\) is said to be \((a,d)\)-\emph{face antimagic} if there exist positive integers \(a\) and \(d\), and a bijection \(g : E(G) \rightarrow \{1,2,…,|E(G)|\}\) such that the induced mapping \(\varphi_g : F(G) \rightarrow {N}\), defined by \(\varphi_g(f) = \sum\{g(e): e \in E(G) \text{ adjacent to face } f\}\), is injective and \(\varphi_g(F) = \{a,a+d,…,a+ (|F(G)| – 1)d\}\).

Mahesh Andar1, Samina Boxwala2, N. B. Limaye 3
1Department of Mathematics N. Wadia College, Pune
2 Department of Mathematics N. Wadia College, Pune
3 Department of Mathematics University of Mumbai Vidyanagari, Mumbai 400098, India
Abstract:

Let \(G\) be a graph with vertex set \(V\) and edge set \(E\). A vertex labelling \(f : V \rightarrow \{0,1\}\) induces an edge labelling \(\overline{f} : E \rightarrow \{0,1\}\) defined by \(\overline{f}(uv) = |f(u) – f(v)|\). Let \(v_f(0), v_f(1)\) denote the number of vertices \(v\) with \(f(v) = 0\) and \(f(v) = 1\) respectively. Let \(e_f(0), e_f(1)\) be similarly defined. A graph is said to be cordial if there exists a vertex labeling \(f\) such that \(|v_f(0) – v_f(1)| \leq 1\) and \(|e_f(0) – e_f(1)| \leq 1\). In this paper, we show that for every positive integer \(t\) and \(n\) the following families are cordial: (1) Helms \(H_{n}\). (2) Flower graphs \(FL_{n}\). (3) Gear graphs \(G_{n}\). (4) Sunflower graphs \(SFL_{n}\). (5) Closed helms \(CH_{n}\). (6) Generalised closed helms \(CH(t,n)\). (7) Generalised webs \(W(t, n)\).

Lutz Volkmann1
1 Lehrstuhl II fir Mathematik, RWTH Aachen, 52056 Aachen, Germany
Abstract:

A cycle \(C\) of a graph \(G\) is called a \(q\)-dominating cycle if every vertex of \(G\) which is not contained in \(C\) is adjacent to at least \(q\) vertices of \(C\). Let \(G\) be a \(k\)-connected graph with \(k \geq 2\). We present a sufficient condition, in terms of the degree sum of \(k + 1\) independent vertices, for \(G\) to have a \(qg\)-dominating cycle. This is an extension of a 1987 result by J.A. Bondy and G. Fan. Furthermore, examples will show that the given condition is best possible.

Zi-Xia Song1
1Department of Mathematics National University of Singapore 10 Kent Ridge Crescent Singapore, 119260
Abstract:

In an earlier paper [11], we proved that there does not exist any \(\Delta\)-critical graph of even order with five major vertices. In this paper, we prove that if \(G\) is a \(\Delta\)-critical graph of odd order \(2n+1\) with five major vertices, then \(e(G) = n\Delta+1\). This extends an earlier result of Chetwynd and Hilton, and also completes our characterization of graphs with five major vertices. In [9], we shall apply this result to establish some results on class 2 graphs whose core has maximum degree two.

Ch. Eslahchi1, M. Ghebleh2, H. Hajiabolhassan3
1Department of Mathematics Shahid Beheshti University Evin, Tehran, Iran
2Department of Mathematical Sciences Sharif University of Technology P.O. Box 11365-9415, Tehran, Iran
3Institute for Studies in Theoretical Physics and Mathematics (IPM)
Abstract:

In this paper, uniquely list colorable graphs are studied. A graph \(G\) is said to be uniquely \(k\)-list colorable if it admits a \(k\)-list assignment from which \(G\) has a unique list coloring. The minimum \(k\) for which \(G\) is not uniquely \(k\)-list colorable is called the \(m\)-number of \(G\). We show that every triangle-free uniquely colorable graph with chromatic number \(k+1\) is uniquely \(k\)-list colorable. A bound for the \(m\)-number of graphs is given, and using this bound it is shown that every planar graph has \(m\)-number at most \(4\). Also, we introduce list criticality in graphs and characterize all \(3\)-list critical graphs. It is conjectured that every \(\chi_\ell’\)-critical graph is \(\chi’\)-critical, and the equivalence of this conjecture to the well-known list coloring conjecture is shown.

Christian Barrientos1
1Departament de Matematica Aplicada i Telematica Universitat Politécnica de Catalunya c/ Jordi Girona 1-3, Médul C3 Campus Nord 08034 Barcelona, Spain
Abstract:

A labeling \(f\) of the vertices of a graph \(G\) is said \(k\)-\emph{equitable} if each weight induced by \(f\) on the edges of \(G\) appears exactly \(k\) times. A graph \(G\) is said \emph{equitable} if for every proper divisor \(k\) of its size, the graph \(G\) has a \(k\)-equitable labeling.

A graph \(G\) is a corona graph if \(G\) is obtained from two graphs, \(G_1\) and \(G_2\), taking one copy of \(G_ 1\), which is supposed to have order \(p$, and \(p\) copies of \(G_2\), and then joining by an edge the \(k^{th}\) vertex of \(G_1\) to every vertex in the \(k^{th}\) copy of \(G_2\). We denote \(G\) by \(G_1 \otimes G_2\).

In this paper, we proved that the corona graph \(C_n \otimes K_1\) is equitable. Moreover, we show \(k\)-equitable labelings of the corona graph \(C_m \otimes nK_1\), for some values of the parameters \(k, m,\) and \(n\).

R. Dios1, D.V. Chopra2
1New Jersey Institute of Technology Newark, New Jersey 07102, U.S.A.
2Wichita State University Wichita, Kansas 67260, U.S.A.
Abstract:

In this paper, we derive a necessary existence condition involving the parameters of a balanced array (B-array) with two symbols and of strength \(t = 8\). Consequently, we demonstrate that the existence condition derived here can provide us with useful information on the maximum number of constraints for B-arrays with a given number of columns.

E-mail Alert

Add your e-mail address to receive upcoming issues of Journal of Combinatorial Mathematics and Combinatorial Computing (JCMCC).

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;