S. Arumugam1, C. Sivagnanam2
1Core Group Research Facility (CGRF) National Centre for Advanced Research in Discrete Mathematics (n~-CARDMATH) Kalasalingam University Anand Nagar, Krishnankoil-626190, INDIA.
2Department of Mathematics St. Joseph’s College of Engineering Chennai-600119, INDIA.
Abstract:

Let \( G = (V, E) \) be a connected graph. A dominating set \( S \) of \( G \) is called a \emph{neighborhood connected dominating set} (\emph{ncd-set}) if the induced subgraph \( \langle N(S) \rangle \) is connected, where \( N(S) \) is the open neighborhood of \( S \). A partition \( \{V_1, V_2, \ldots, V_k\} \) of \( V(G) \), in which each \( V_i \) is an ncd-set in \( G \), is called a \emph{neighborhood connected domatic partition} or simply \emph{nc-domatic partition} of \( G \). The maximum order of an nc-domatic partition of \( G \) is called the neighborhood connected domatic number (nc-domatic number) of \( G \) and is denoted by \( d_{nc}(G) \). In this paper, we initiate a study of this parameter.

Nick C. Fiala1, Keith M. Agre1
1St. Cloud State University St. Cloud, MN 56301
Abstract:

In this note, we exhibit shortest single axioms for SQS-skeins and Mendelsohn ternary quasigroups that were found with the aid of the automated theorem-prover Prover9 and the finite model-finder

G. R. Vijayakumar1
1School of Mathematics, Tata Institute of Fundamental Research Homi Bhabha Road, Colaba, Mumbai 400005, India
Abstract:

An injective map from the vertex set of a graph \( G \) to the set of all natural numbers is called an arithmetic/geometric labeling of \( G \) if the set of all numbers, each of which is the sum or product of the integers assigned to the ends of some edge, form an arithmetic/geometric progression. A graph is called arithmetic/geometric if it admits an arithmetic/geometric labeling. In this note, we show that the two notions just mentioned are equivalent—i.e., a graph is arithmetic if and only if it is geometric.

Zehui Shao1, Jin Xu1, Qiquan Bao1, Linqiang Pan1
1Department of Control Science and Engineering Huazhong University of Science and Technology Wuhan 430074, China
Abstract:

For given graphs \( G_1 \) and \( G_2 \), the \( 2 \)-color Ramsey number \( R(G_1, G_2) \) is defined to be the least positive integer \( n \) such that every \( 2 \)-coloring of the edges of the complete graph \( K_n \) contains a copy of \( G_1 \) colored with the first color or a copy of \( G_2 \) colored with the second color. In this note, we obtained some new exact values of generalized Ramsey numbers such as cycle versus book, book versus book, and complete bipartite graph versus complete bipartite graph.

Abstract:

We show that the necessary conditions are sufficient for the existence of group divisible designs (PBIBDs of group divisible type) for block size \( k = 3 \) and with three groups of sizes \( 1 \), \( 1 \), and \( n \).

Matthias Bohm1
1Universitat Rostock Institut fir Mathematik D-18051 Rostock, Germany
Abstract:

Let \( \mathcal{B} \subseteq 2^{[m]} \) be an antichain of size \( |\mathcal{B}| =: n \). \( 2^{[m]} \) is ordered by inclusion. An antichain \( \mathcal{B} \) is called \( k \)-regular (\( k \in \mathbb{N} \)), if for each \( i \in [m] \) there are exactly \( k \) sets \( B_1, B_2, \ldots, B_k \in \mathcal{B} \) containing \( i \). In this case, we say that \( \mathcal{B} \) is a \( (k, m, n) \)-antichain.

Let \( m \geq 2 \) be an arbitrary natural number. In this note, we show that an \( (m-1, m, n) \)-antichain exists if and only if \( n \in [m+2, \binom{m}{2} – 2] \cup \{m, \binom{m}{2}\} \).

A. Anitha1, S. Arumugam1, 8.B. Rao2, E. Sampathkumar3
1Core Group Research Facility (CGRF) National Centre for Advanced Research in Discrete Mathematics (n-CARDMATH) Kalasalingam University Anand Nagar, Krishnankoil-626 190, India.
2Director, C R Rao AIMSCS Hyderabad, India.
3Department of Mathematics University of Mysore, Mysore – 570 006, India.
Abstract:

Let \( G = (V, E) \) be a connected graph. A subset \( S \) of \( V \) is called a degree equitable set if the degrees of any two vertices in \( S \) differ by at most one. The minimum order of a partition of \( V \) into independent degree equitable sets is called the \emph{degree equitable chromatic number} of \( G \) and is denoted by \( \chi_{de}(G) \). In this paper, we initiate a study of this new coloring parameter.

Yuichiro Fujiwara1, Shung-Liang Wu2, Hung-Lin Fu3
1Yuichiro Fujiwara is with the Graduate School of System and Information Engineering, University of Tsukuba, Tsukuba, Ibaraki, Japan
2Shung-Liang Wu is with National United University, Miaoli, Taiwan, R.O.C.
3Hung-Lin Fu is with Department of Applied Mathematics, National Chiao Tung University, Hsin Chu, Taiwan, R.O.C,
Abstract:

An avoidance problem of configurations in \( 4 \)-cycle systems is investigated by generalizing the notion of sparseness, which is originally from Erdős’ \( r \)-sparse conjecture on Steiner triple systems. A \( 4 \)-cycle system of order \( v \), \( 4CS(v) \), is said to be \( r \)-sparse if for every integer \( j \) satisfying \( 2 \leq j \leq r \) it contains no configurations consisting of \( j \) \( 4 \)-cycles whose union contains precisely \( j + 3 \) vertices. If an \( r \)-sparse \( 4CS(v) \) is also free from copies of a configuration on two \( 4 \)-cycles sharing a diagonal, called the double-diamond, we say it is strictly \( r \)-sparse. In this paper, we show that for every admissible order \( v \) there exists a strictly \( 4 \)-sparse \( 4CS(v) \). We also prove that for any positive integer \( r \geq 2 \) and sufficiently large integer \( v \), there exists a constant number \( c \) such that there exists a strictly \( r \)-sparse \( 4 \)-cycle packing of order \( v \) with \( c \cdot v^2 \) \( 4 \)-cycles.

Midori Kobayashi1, Brendan D. McKay2, Nobuaki Mutoh1, Gisaku Nakamura3
1University of Shizuoka Shizuoka, 422-8526, JAPAN
2School of Computer Science, Australian National University Canberra, ACT, 0200, AUSTRALIA
3Tokai University Shibuya-ku, Tokyo, 151-0063, JAPAN
Abstract:

A set of Hamilton cycles in the complete graph \( K_n \) is called a Dudeney set if every path of length two lies on exactly one of the cycles. It has been conjectured that there is a Dudeney set for every complete graph. It is known that there exists a Dudeney set for \( K_n \) when \( n \) is even, but the question is still unsettled when \( n \) is odd.

In this paper, we define a black \( 1 \)-factor in \( K_{p+1} \) for an odd prime \( p \), and show that if there exists a black \( 1 \)-factor in \( K_{p+1} \), then we can construct a Dudeney set for \( K_{p+2} \). We also show that if there is a black \( 1 \)-factor in \( K_{p+1} \), then \( 2 \) is a quadratic residue modulo \( p \). Using this result, we obtain some new Dudeney sets for \( K_n \) when \( n \) is odd.

A.D, Forbes1, T.S. Griggs 1, F.C. Holroyd1
1Department of Mathematics and Statistics The Open University Walton Hall Milton Keynes MK7 6AA UNITED KINGDOM
Abstract:

We prove that the complete graph \( K_v \) can be decomposed into rhombicuboctahedra if and only if \( v \equiv 1 \) or \( 33 \pmod{96} \).

E-mail Alert

Add your e-mail address to receive upcoming issues of Journal of Combinatorial Mathematics and Combinatorial Computing (JCMCC).

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;