Ciping Chen1, Guizhen Liu2
1P.O. Box 71 Beijing Agricultural Engineering University Qinghua Donglu, Beijing 100083, P. R. China
2Department of Mathematics Shandong University Jinan, Shandong P.R. China, 250100
Abstract:

Chvátal conjectured that if \(G\) is a \(k\)-tough graph and \(k|V(G)|\) is even, then \(G\) has a \(k\)-factor. In \([5\) it was proved that Chvátal’s conjecture is true. Katerinis\([2]\) presented a toughness condition for a graph to have an \([a, b]\)-factor. In this paper, we prove a stronger result: every \((a – 1 + a/b)\)-tough graph satisfying all necessary conditions has an \([a, b]\)-factor containing any given edge and another \([a, b]\)-factor excluding it. We also discuss some special cases of the above result.

C.C. Lindner1
1 Department of Algebra, Combinatorics and Analysis Auburn University Aubum, Alabama 36849-5307 USA.
B.A. Anderson1
1Department of Mathematics Arizona State University Tempe, Arizona U.S.A. 85287-1804
Abstract:

R.A. Bailey has conjectured that all finite groups except elementary Abelian \(2\)-groups with more than one factor have \(2\)-sequencings (i.e., terraces). She verified this for all groups of order \(n\), \(n \leq 9\). Results proved since the appearance of Bailey’s paper make it possible to raise this bound to \(n \leq 87\) with \(n = 64\) omitted. Relatively few groups of order not \(2^n\), \(n \in \{4, 5\}\) must be handled by machine computation.

Jean Dunbar1, Renu Laskar2
1Mathematics Department Converse College Spartanburg, S.C. 29302
2Department of Mathematics Clemson University Clemson, S.C. 29634
Abstract:

A set \(S\) of vertices of a graph \(G = (V, E)\) is a global dominating set if \(S\) dominates both \(G\) and its complement \(\overline{G}\). The concept of global domination was first introduced by Sampathkumar. In this paper, we extend this notion to irredundancy. A set \(S\) of vertices will be called universal irredundant if \(S\) is irredundant in both \(G\) and \(\overline{G}\). A set \(S\) will be called global irredundant if for every \(x\) in \(S\), \(x\) is an irredundant vertex in \(S\) either in \(G\) or in \(\overline{G}\). We investigate the universal irredundance and global irredundance parameters of a graph. It is also shown that the determination of the upper universal irredundance number of graphs is NP-Complete.

Stanislaw P. Radziszowski1
1Deprtment of Computer Science Rochester Institute of Technology Rochester, New York 14623
Abstract:

We enumerate by computer algorithms all simple \(t-(t+7, t+1, 2)\) designs for \(1 \leq t \leq 5\), i.e., for all possible \(t\). This enumeration is new for \(t \geq 3\). The number of nonisomorphic designs is equal to \(3, 13, 27, 1\) and \(1\) for \(t = 1, 2, 3, 4\) and \(5\), respectively. We also present some properties of these designs, including orders of their full automorphism groups and resolvability.

L. Caccetta1, Purwanto 1
1 School of Mathematics and Statistics Curtin University of Technology GPO Box U 1987, Perth, WA 6001 AUSTRALIA
Abstract:

Let \(G\) be a finite simple graph. The vertex clique covering number \({vcc}(G)\) of \(G\) is the smallest number of cliques (complete subgraphs) needed to cover the vertex set of \(G\). In this paper, we study the function \({vcc}(G)\) for the case when \(G\) is \(r\)-regular and \((r-2)\)-edge-connected. A sharp upper bound for \({vcc}(G)\) is determined. Further, the set of possible values of \({vcc}(G)\) when \(G\) is a \(4\)-regular connected graph is determined.

K.M. Martin1, Jennifer Seberry2, BR. Wild1
1Department of Mathematics RHBNC Egham Hill, Egham Surrey TW20 0EX
2Department of Computer Science University of Wollongong NSW, 2500, Australia
Abstract:

We consider certain resolvable designs which have applications to doubly perfect Cartesian authentication schemes. These generalize structures determined by sets of mutually orthogonal Latin squares and are related to semi-Latin squares and other designs which find applications in the design of experiments.

Alan Rahilly1
1Department of Mathematics University of Queensland, St. Lucia 4067 Australia
Abstract:

A \(1\)-spread of a BIBD \(\mathcal{D}\) is a set of lines of maximal size of \(\mathcal{D}\) which partitions the point set of \(\mathcal{D}\). The existence of infinitely many non-symmetric BIBDs which (i) possess a \(1\)-spread, and (ii) are not merely a multiple of a symmetric BIBD,
is shown. It is also shown that a \(1\)-spread \(\mathcal{S}\) gives rise to a regular group divisible design \(\mathcal{G}(\mathcal{S})\). Necessary and sufficient conditions that the dual of such a group divisible design \(\mathcal{G}(\mathcal{S})\) be a group divisible design are established and used to show the existence of an infinite class of symmetric regular group divisible designs whose duals are not group divisible.

Linda M. Lawson1, Teresa W. Haynes2
1Department of Mathematics East Tennessee State University Johnson City, TN 37614
2Department of Computer Science East Tennessee State University Johnson City, TN 37614
Abstract:

We consider the changing and unchanging of the edge covering and edge independence numbers of a graph when the graph is modified by deleting a node, deleting an edge, or adding an edge. In this paper, we present characterizations for the graphs in each of these classes and some relationships among them.

E-mail Alert

Add your e-mail address to receive upcoming issues of Journal of Combinatorial Mathematics and Combinatorial Computing (JCMCC).

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;