Miranda L. Roden-Bowie1, Peter J. Slater2
1Department of Mathematics and Computer Science, The University of North Alabama, Florence, AL 35632 USA
2Department of Mathematical Sciences and Computer Sciences Department, The University of Alabama in Huntsville, Huntsville, AL 35899 USA
Abstract:

We define the \( (i, j) \)-liars’ domination number of \( G \), denoted by \( LR(i, j)(G) \), to be the minimum cardinality of a set \( L \subseteq V(G) \) such that detection devices placed at the vertices in \( L \) can precisely determine the set of intruder locations when there are between 1 and \( i \) intruders and at most \( j \) detection devices that might “lie”.

We also define the \( X(c_1, c_2, \ldots, c_t, \ldots) \)-domination number, denoted by \( \gamma _{X(c_1, c_2, \ldots, c_t, \ldots)}(G) \), to be the minimum cardinality of a set \( D \subseteq V(G) \) such that, if \( S \subseteq V(G) \) with \( |S| = k \), then \( |(\bigcup_{v \in S} N[v]) \cap D| \geq c_k \). Thus, \( D \) dominates each set of \( k \) vertices at least \( c_k \) times making \( \gamma_{X(c_1, c_2, \ldots, c_t, \ldots)}(G) \) a set-sized dominating parameter. We consider the relations between these set-sized dominating parameters and the liars’ dominating parameters.

Ting-Ting Zhang 1, Feng-Zhen Zhao1
1Department of Mathematics, Shanghai University, Shanghai 200444, China.
Abstract:

For Cauchy numbers of the first kind \( \{a_n\}{n \geq 0} \) and Cauchy numbers of the second kind \( \{b_n\}{n \geq 0} \), this paper focuses on the log-convexity of some sequences related to \( \{a_n\}{n \geq 0} \) and \( \{b_n\}{n \geq 0} \). For example, we discuss log-convexity of \( \{n|a_n| – |a_{n+1}|\}{n \geq 1} \), \( \{b{n+1} – nb_n\}{n \geq 1} \), \( \{n|a_n|\}{n \geq 1} \), and \( \{(n + 1)b_n\}_{n \geq 0} \). In addition, we investigate log-balancedness of some sequences involving \( a_n \) (or \( b_n \)).

Abstract:

Let \( G \) be a graph. We define the distance \( d \) pebbling number of \( G \) to be the smallest number \( s \) such that if \( s \) pebbles are placed on the vertices of \( G \), then there must exist a sequence of pebbling moves which takes a pebble to a vertex which is at a distance of at least \( d \) from its starting point. In this article, we evaluate the distance \( d \) pebbling numbers for a directed cycle graph with \( n \) vertices.

Rao Li 1
1Dept. of Mathematical Sciences University of South Carolina Aiken, Aiken, SC 29801
Abstract:

Let \( G \) be a \( k \)-connected (\( k \geq 2 \)) graph of order \( n \). If \( \gamma(G^c) \geq n – k \), then \( G \) is Hamiltonian or \( K_k \vee K_{k+1}^c \), where \( \gamma(G^c) \) is the domination number of the complement of the graph \( G \).

Lutz Volkmann1
1Lehrstuhl II für Mathematik RWTH Aachen University 52056 Aachen, Germany
Abstract:

An \emph{Italian dominating function} on a digraph \( D \) with vertex set \( V(D) \) is defined as a function \( f : V(D) \to \{0, 1, 2\} \) such that every vertex \( v \in V(D) \) with \( f(v) = 0 \) has at least two in-neighbors assigned 1 under \( f \) or one in-neighbor \( w \) with \( f(w) = 2 \). The weight of an Italian dominating function is the sum \( \sum_{v \in V(D)} f(v) \), and the minimum weight of an Italian dominating function \( f \) is the \emph{Italian domination number}, denoted by \( \gamma_I(D) \). We initiate the study of the Italian domination number for digraphs, and we present different sharp bounds on \( \gamma_I(D) \). In addition, we determine the Italian domination number of some classes of digraphs. As applications of the bounds and properties on the Italian domination number in digraphs, we give some new and some known results of the Italian domination number in graphs.

Lata N. Kamble1, C. M. Deshpande2, B. P. Athawale2
1Department of Mathematics, Abasaheb Garware College, Pune-411004, India.
2Department of Mathematics, College of Engineering Pune, Pune-411005, India.
Abstract:

A hypergraph \( H \) with vertex set \( V \) and edge set \( E \) is called bipartite if \( V \) can be partitioned into two subsets \( V_1 \) and \( V_2 \) such that \( e \cap V_1 \neq \phi \) and \( e \cap V_2 \neq \phi \) for any \( e \in E \). A bipartite self-complementary 3-uniform hypergraph \( H \) with partition \( (V_1, V_2) \) of a vertex set \( V \) such that \( |V_1| = m \) and \( |V_2| = n \) exists if and only if either (i) \( m = n \) or (ii) \( m \neq n \) and either \( m \) or \( n \) is congruent to 0 modulo 4 or (iii) \( m \neq n \) and both \( m \) and \( n \) are congruent to 1 or 2 modulo 4.

In this paper we prove that, there exists a regular bipartite self-complementary 3-uniform hypergraph \( H(V_1, V_2) \) with \( |V_1| = m, |V_2| = n, m + n > 3 \) if and only if \( m = n \) and \( n \) is congruent to 0 or 1 modulo 4. Further we prove that, there exists a quasi-regular bipartite self-complementary 3-uniform hypergraph \( H(V_1, V_2) \) with \( |V_1| = m, |V_2| = n, m + n > 3 \) if and only if either \( m = 3, n = 4 \) or \( m = n \) and \( n \) is congruent to 2 or 3 modulo 4.

John Asplund 1, N. Bradley Fox 2, Arran Hamm3
1Department of Technology and Mathematics Dalton State College, Dalton, GA 30720, USA
2Department of Mathematics and Statistics Austin Peay State University, Clarksville, TN 37044
3Department of Mathematics Winthrop University, Rock Hill, SC 29733
Abstract:

Neighborhood-prime labeling is a variation of prime labeling. A labeling \( f : V(G) \to [|V(G)|] \) is a neighborhood-prime labeling if for each vertex \( v \in V(G) \) with degree greater than 1, the greatest common divisor of the set of labels in the neighborhood of \( v \) is 1. In this paper, we introduce techniques for finding neighborhood-prime labelings based on the Hamiltonicity of the graph, by using conditions on possible degrees of vertices, and by examining a neighborhood graph. In particular, classes of graphs shown to be neighborhood-prime include all generalized Petersen graphs, grid graphs of any size, and lobsters given restrictions on the degree of the vertices. In addition, we show that almost all graphs and almost all regular graphs have neighborhood-prime, and we find all graphs of this type.

Michael Braun 1, Joshua Humpich 1, Antti Laaksonen 2, Patric R. J. Östergård 2
1Faculty of Computer Sciences University of Applied Sciences, Darmstadt, Germany
2Department of Communications and Networking Aalto University School of Electrical Engineering P.O. Box 15400, 00076 Aalto, Finland
Abstract:

Let \( A(n, d, w) \) denote the maximum size of a binary code with length \( n \), minimum distance \( d \), and constant weight \( w \). The following lower bounds are here obtained in computer searches for codes with prescribed automorphisms: \( A(16, 4, 6) \geq 624 \), \( A(19, 4, 8) \geq 4698 \), \( A(20, 4, 8) \geq 7830 \), \( A(21, 4, 6) \geq 2880 \), \( A(22, 6, 6) \geq 343 \), \( A(24, 4, 5) \geq 1920 \), \( A(24, 6, 9) \geq 3080 \), \( A(24, 6, 11) \geq 5376 \), \( A(24, 6, 12) \geq 5558 \), \( A(25, 4, 5) \geq 2380 \), \( A(25, 6, 10) \geq 6600 \), \( A(26, 4, 5) \geq 2816 \), and \( A(27, 4, 5) \geq 3456 \).

Matt Noble 1
1Department of Mathematics Middle Georgia State University
Abstract:

For a finite simple graph \( G \), say \( G \) is of dimension \( n \), and write \( \text{dim}(G) = n \), if \( n \) is the smallest integer such that \( G \) can be represented as a unit-distance graph in \( \mathbb{R}^n \). Define \( G \) to be \emph{dimension-critical} if every proper subgraph of \( G \) has dimension less than \( G \). In this article, we determine exactly which complete multipartite graphs are dimension-critical. It is then shown that for each \( n \geq 2 \), there is an arbitrarily large dimension-critical graph \( G \) with \( \text{dim}(G) = n \). We close with a few observations and questions that may aid in future work.

A. D. Akwu 1, O. Oyewumi1
1Federal University of Agriculture, Makurdi, Benue State, Nigeria
Abstract:

Let \( G \) be a simple and finite graph. A graph is said to be decomposed into subgraphs \( H_1 \) and \( H_2 \) which is denoted by \( G = H_1 \oplus H_2 \), if \( G \) is the edge disjoint union of \( H_1 \) and \( H_2 \). If \( G = H_1 \oplus H_2 \oplus \cdots \oplus H_k \), where \( H_1, H_2, \ldots, H_k \) are all isomorphic to \( H \), then \( G \) is said to be \( H \)-decomposable. Furthermore, if \( H \) is a cycle of length \( m \), then we say that \( G \) is \( C_m \)-decomposable and this can be written as \( C_m \mid G \). Where \( G \times H \) denotes the tensor product of graphs \( G \) and \( H \), in this paper, we prove that the necessary conditions for the existence of \( C_6 \)-decomposition of \( K_m \times K_n \) are sufficient. Using these conditions it can be shown that every even regular complete multipartite graph \( G \) is \( C_6 \)-decomposable if the number of edges of \( G \) is divisible by 6.

E-mail Alert

Add your e-mail address to receive upcoming issues of Journal of Combinatorial Mathematics and Combinatorial Computing (JCMCC).

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;