Tetsuya Abe1
1Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology 4259, Nagatsuta, Midori-ku, Yokohama, 226-8502 Japan
Abstract:

In this paper, we show that for every modular lattice \(L\), if its size is at least three times its excess, then each component of its direct product decomposition is isomorphic to one of the following: a Boolean lattice of rank one \(B_1\), a chain of length two \(3\), a diamond \(M_3\), and \(M_4\), where \(M_n\) is a modular lattice of rank two which has exactly \(n\) atoms.

Abstract:

Using algebraic curves, it will be proven that large partial unitals can be embedded into unitals and large \((k,n)\)-arcs into maximal arcs.

Abstract:

In a set equipped with a binary operation, \((S, \cdot)\), a subset \(U\) is defined to be avoidable if there exists a partition \(\{A, B\}\) of \(S\) such that no element of \(U\) is the product of two distinct elements of \(A\) or of two distinct elements of \(B\). For more than two decades, avoidable sets in the natural numbers (under addition) have been studied by renowned mathematicians such as Erdős, and a few families of sets have been shown to be avoidable in that setting. In this paper, we investigate the generalized notion of an avoidable set and determine the avoidable sets in several families of groups; previous work in this field considered only the case \((S, \cdot) = (\mathbb{N}, +)\).

Min-Jen Jou1, Gerard J.Chang2
1Ling Tong College Tai Chung, Taiwan
2Department of Applied Mathematics National Chiao Tung University Hsinchu 30050, Taiwan
Abstract:

This paper studied the problems of counting independent sets, maximal independent sets, and maximum independent sets of a graph from an algorithmic point of view. In particular, we present linear-time algorithms for these problems in trees and unicyclic graphs.

B.S. Chandramouli1
11177,18″ A Main, 3″ Cross, J.P.Nagara 2™ Phase, Bangalore-560078, India
Abstract:

The Stirling numbers of first kind and Stirling numbers of second kind, denoted by \(s(n,k)\) and \(S(n,k)\) respectively, arise in a variety of combinatorial contexts. There are several algebraic and combinatorial relationships between them. Here, we state and prove four new identities concerning the determinants of matrices whose entries are unsigned Stirling numbers of first kind and Stirling numbers of second kind. We also observe an interrelationship between them based on our identities.

Chester W.J. Liu1, Peter R.Wild2
1 Department of Mathematics, Royal Holloway, University of London, Egham Hill, Egham, Surrey, TW20 0EX, UK
2Department of Mathematics, Royal Holloway, University of London, Egham Hill, Egham, Surrey, TW20 VEX, UK
Abstract:

We generalize a construction by Treash of a Steiner triple system on \(2v+1\) points that embeds a Steiner triple system on \(v\) points. We show that any Steiner quadruple system on \(v+1\) points may be embedded in a Steiner quadruple system on \(2v+2\) points.

Yanxun Chang1
1Department of Mathematics Northern Jiaotong University, 100044, Beijing, China
Abstract:

A \((\lambda K_n, G)\)-design is a partition of the edges of \(\lambda K_n\), into sub-graphs each of which is isomorphic to \(G\). In this paper, we investigate the existence of \((K_n, G_{16})\)-design and \((K_n, G_{20})\)-design, and prove that the necessary conditions for the existence of the two classes of graph designs are also sufficient.

Manisha Acharya1, Vasanti N.Bhat-Nayak1
1Departanent of Mathematics University of Mumbai Vidvanagari. Mumbai-400 098.{INDLA ).
Abstract:

Every labeling of the vertices of a graph with distinct natural numbers induces a natural labeling of its edges: the label of an edge \(ae\) is the absolute value of the difference of the labels of \(a\) and \(e\). A labeling of the vertices of a graph of order \(p\) is minimally \(k\)-equitable if the vertices are labeled with elements of \({1,2, \ldots, p}\) and in the induced labeling of its edges, every label either occurs exactly \(k\) times or does not occur at all. We prove that the corona graph \(C_{2n}OK_1\) is minimally \(4\)-equitable.

David C.Fisher1, Paul Thalos1
1University of Colorado at Denver
Abstract:

A set of Bishops cover a board if they attack all unoccupied squares. What is the minimum number of Bishops needed to cover an \(k \times n\) board \(?\) Yaglom and Yaglom showed that if \(k = n\), the answer is \(n\). We extend this result by showing that the minimum is \(2\lfloor \frac{n}{2}\rfloor\) if \(k 2k > 2\), a cover is given with \(2\lfloor\frac{k+n}{2}\rfloor\) Bishops. We conjecture that this is the minimum value. This conjecture is verified when \(k \leq 3\) or \(n \leq 2k + 5\).

Parag K.Deb1, N.B. Limaye2
1Department of Mathematics, Cotton College, Guwahati-781001, Assam, India
2Department of Mathematics, University of Mumbai, 400098, India
Abstract:

It is proved that the following graphs are harmonious:(1) shell graphs (2) cycles with the maximum possible number of concurrent alternate chords (3) Some families of multiple shells

M.A. Seoud1, M.Z. Youssef1
1Math. Dept., Faculty of Science Ain Shams University Abbassia, Cairo, Egypt.
Abstract:

In this paper, we determine all harmonious graphs of order \(6\).
All graphs in this paper are finite, simple and undirected. We shall use the basic notation and terminology of graph theory as in [1].

Neville Robbins1
1Mathematics Department . San Francisco State University San Francisco, CA 94132 USA
Abstract:

Let \(R(n)\) denote the number of two-color partitions of \(n\). We obtain several identities concerning \(R(n)\).

Ottilia Fulop1
1Institute of Mathematics, Technical University, Budapest
Abstract:

We show that if \(M(n, m)\) denotes the time of a \((u, v)\)-minimum cut computation in a directed graph with \(n \geq 2\) nodes, \(m\) edges, and \(s\) and \(t\) are two distinct given nodes, then there exists an algorithm with \(O(n^2m+n\cdot M(n, m))\) running time for the directed minimum odd (or even) \((s, t)\)-cut problem and for its certain generalizations.

Jerzy Jaworski1, Zbigniew Palka2
1Faculty of Mathematics and Computer Science Adam Mickiewicz University, Poznati, Poland
2Faculty of Mathematics and Computer Science Adam Mickiewicz University and Institute of Mathematics, Technical University Poznan, Poland
Abstract:

Basic properties of in-degree distribution of a general model of random digraphs \(D(n, \mathcal{P})\) are presented. Then some relations between random digraphs \(D(n, \mathcal{P})\) for different probability distributions \(\mathcal{P}\)’s are studied. In this context, a problem of the existence of a threshold function for every monotone digraph property of \(D(n, \mathcal{P})\) is discussed.

Joanna Gorska1, Zdzislaw Skupien1
1Faculty of Applied Mathematics, University of Mining and Metallurgy AGH al. Mickiewicza 30, 30-059 Krakéw, Poland
Abstract:

For a given structure (graph, multigraph, or pseudograph) \(G\) and an integer \(r \geq \Delta(G)\), a smallest inducing \(r\)-regularization of \(G\) (which is an \(r\)-regular superstructure of the smallest possible order, with bounded edge multiplicities, and containing \(G\) as an induced substructure) is constructed.

D.Di Marco1
1New York City Technical College
Abstract:

It is an established fact that some graph-theoretic extremal questions play an important part in the investigation of communication network vulnerability. Questions concerning the realizability of graph invariants are generalizations of these extremal problems. We define a \((p, q, \lambda, \delta)\) graph as a graph having \(p\) points, \(q\) lines, line connectivity \(\lambda\) and minimum degree \(\delta\). An arbitrary quadruple of integers \((a, b, c, d)\) is called \((p, q, \lambda, \delta)\) realizable if there is a \((p, q, \lambda, \delta)\) graph with \(p = a, q = b, \lambda = c\), and \(\delta = d\). Inequalities representing necessary and sufficient conditions for a quadruple to be \((p, q, \lambda, \delta)\) realizable are derived. In recent papers, the author gave necessary and sufficient conditions for \((p, q, \kappa, \Delta), (p, q, \lambda, \Delta), (p, q, \delta, \Delta)\) and \((p, q, \kappa, \delta)\) realizability, where \(\Delta\) denotes the maximum degree for all points in a graph and \(\lambda\) denotes the point connectivity of a graph. Boesch and Suffel gave the solutions for \((p, q, \kappa), (p, q, \lambda), (p, q, \delta), (p, \Delta, \delta, \lambda)\) and \((p, \Delta, \delta, \kappa)\) realizability in earlier manuscripts.

Sang-Mok Kim1
1DEPARTMENT OF MATHEMATICS SOGANG UNIVERSITY SEOUL 121-742, KOREA
Abstract:

An aperiodic perfect map (APM) is an array with the property that each possible array of certain size, called a window, arises exactly once as a subarray in the array. In this article, we give some constructions which imply a complete answer for the existence of APMs with \(2 \times 2\) windows for any alphabet size.

George J.Davis1, Gayla S.Domke1, Charles R.Garner, Jr.1
1Department of Mathematics and Statistics Georgia State University, Atlanta, GA 30303
Abstract:

A \(4\)-regular graph \(G\) is called a \(4\)-circulant if its adjacency matrix \(A(G)\) is a circulant matrix. Because of the special structure of the eigenvalues of \(A(G)\), the rank of such graphs is completely determined. We show how all disconnected \(4\)-circulants are made up of connected \(4\)-circulants and classify all connected \(4\)-circulants as isomorphic to one of two basic types.

T.Aaron Gulliver1
1Department of Electrical and Computer Engi- neering, University of Victoria, P.O. Box 3055, MS 8610, Victoria, B.C., Canada V8W 3P6
Abstract:

Let \([n, k, d; g]\)-codes be linear codes of length \(n\), dimension \(k\) and minimum Hamming distance \(d\) over \(\mathrm{GF}(g)\). Let \(d_8(n, k)\) be the maximum possible minimum Hamming distance of a linear \([n, k, d; 8]\)-code for given values of \(n\) and \(k\). In this paper, twenty-two new linear codes over \(\mathrm{GF}(8)\) are constructed which improve the bounds on \(d_8(n, k)\).

S. Georgiou1, C. Koukouvinos1, Jennifer Seberry2
1Department of Mathematics National Technical University of Athens Zografou 15773, Athens, Greece
2School of IT and Computer Science University of Wollongong Wollongong, NSW, 2522, Australia
Abstract:

We find new full orthogonal designs in order \(56\) and show that of
\(1285\) possible \(OD(56; s_1, s_2, s_3,56 – s_1 – s_2 – s_3)\) \(163\) are known, of
\(261\) possible \(OD(56; s_1, s_2, 56 – s_1 – s_2)\) \(179\) are known. All possible
\(OD(56; s_1,56 – s_1)\) are known.

Helmut Prodinger1
1THE JOHN KNOPFMACHER CENTRE FOR APPLICABLE ANALYSIS AND NUMBER THEORY, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF THE WITWATER- SRAND, P. O. WITS, 2050 JOHANNESBURG, SOUTH AFRICA,
Abstract:

Sattolo has presented an algorithm to generate cyclic permutations at random. In this note, the two parameters “number of moves” and “distance” are analyzed.

Kiyoshi Ando1, Atsuhiro Nakamoto2
1Department of Computer Science and Information Mathematics The University of Electro-Communications 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
2Department of Mathematics Osaka Kyoiku University 4-698-1 Asahigaoka, Kashiwara, Osaka 852-8582, Japan
Abstract:

In this paper, we shall classify the self-complementary graphs with minimum degree exactly \(2\).

Deborah A.Frank1, Carla D.Savage2, James A.Sellers3
1Department of Mathematics Miami University, Hamilton 1601 Peck Boulevard Hamilton, OH 40511
2Department of Computer Science, Box 8206 North Carolina State University Raleigh, NC 27695
3Department of Science and Mathematics Cedarville University Cedarville, OH 45314
Abstract:

A graphical partition of the even integer \(n\) is a partition of \(n\) where each part of the partition is the degree of a vertex in a simple graph and the degree sum of the graph is \(n\). In this note, we consider the problem of enumerating a subset of these partitions, known as graphical forest partitions, graphical partitions whose parts are the degrees of the vertices of forests (disjoint unions of trees). We shall prove that

\[gf(2k) = p(0) + p(1) + p(2) + \cdots + p(k-1)\]

where \(g_f(2k)\) is the number of graphical forest partitions of \(2k\) and \(p(j)\) is the ordinary partition function which counts the number of integer partitions of \(j\).

P.D. Johnson Jr.1, E.B. Wantland2
1Department of Discrete and Statistical Sciences Auburn University, AL 36849
2Mathematics Western College of the University of Montana Dillon, Montana
Abstract:

We make further progress towards the forbidden-induced-subgraph characterization of the graphs with Hall number \(\leq 2\). We solve several problems posed in [4] and, in the process, describe all “partial wheel” graphs with Hall number \(\geq 2\) with every proper induced subgraph having Hall number \(\leq 2\).

Ping Zhang1
1Department of Mathematics and Statistics Western Michigan University Kalamazoo, MI 49008 USA
Abstract:

A radio labeling of a connected graph $G$ is an assignment of distinct, positive integers to the vertices of \(G\), with \(x \in V(G)\) labeled \(c(x)\), such that

\[d(u, v) + |c(u) – c(v)| \geq 1 + diam(G)\]

for every two distinct vertices \(u,v\) of \(G\), where \(diam(G)\) is the diameter of \(G\). The radio number \(rn(c)\) of a radio labeling \(c\) of \(G\) is the maximum label assigned to a vertex of \(G\). The radio number \(rn(G)\) of \(G\) is \(\min\{rn(c)\}\) over all radio labelings \(c\) of \(G\). Radio numbers of cycles are discussed and upper and lower bounds are presented.

Midori Kobayashi1, Nobuaki Mutoh2, Kiyasu-Zen’ iti3, Gisaku Nakamura4
1School of Administration and Informatics University of Shizuoka Shizuoka 422-8526 Japan
2School of Administration and Informatics University of Shizuoka Shizuoka. 422-8526 Japan
3Semiconductor Research Institute Sendaisi Aobaku Kawauti 980-0862 Japan
4Tokai University Shibuyaku Tokyo 151-0063 Japan
Abstract:

Dudeney’s round table problem was proposed about one hundred years ago. It is already solved when the number of people is even, but it is still unsettled except for only a few cases when the number of people is odd.

In this paper, a solution of Dudeney’s round table problem is given when \(n = p+2\), where \(p\) is an odd prime number such that \(2\) is the square of a primitive root of \(\mathrm{GF}(p)\), \(p \equiv 1 \pmod{4}\), and \(3\) is not a quadratic residue modulo \(p\).

E-mail Alert

Add your e-mail address to receive upcoming issues of Ars Combinatoria.

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;