D.G. Hoffman1, K.S. Kirkpatrick1
1Department of Discrete and Statistical Sciences 120 Math Annex Auburn University, Alabama USA 36849-5307
Abstract:

In this paper, we show the necessary and sufficient conditions for a complete graph on \(n\) vertices with a hole of size \(v\) (\(K_n \setminus K_v\)) to be decomposed into isomorphic copies of \(K_3\) with a pendant edge.

G. Gutin1
1Department of Maths and Stats Brunel University Uxbridge, Middlesex, UB8 3PH, U.K.
Abstract:

Given a digraph (an undirected graph, resp.) \(D\) and two positive integers \(f(x), g(x)\) for every \(x \in V(D)\), a subgraph \(H\) of \(D\) is called a \((g, f)\)-factor if \(g(x) \leq d^+_H(x) = d^-_H(x) \leq f(x)\) (\(g(x) \leq d_H(x) \leq f(x)\), resp.) for every \(x \in V(D)\). If \(f(x) = g(x) = 1\) for every \(x\), then a connected \((g, f)\)-factor is a hamiltonian cycle. The previous research related to the topic has been carried out either for \((g, f)\)-factors (in general, disconnected) or for hamiltonian cycles separately, even though numerous similarities between them have been recently detected. Here we consider connected \((g, f)\)-factors in digraphs and show that several results on hamiltonian digraphs, which are generalizations of tournaments, can be extended to connected \((g, f)\)-factors. Applications of these results to supereulerian digraphs are also obtained.

Jeremy Dover1
1Department of Mathematics Moravian College, Bethlehem, PA 18018
Bhalchandra D.Thatte1
1Combinatorics and Optimization University of Waterloo Waterloo, Ontario N2L 3G1, CANADA
Abstract:

Let \(G\) be a group of permutations acting on an \(7\)-vertex set \(V\), and \(X\) and \(Y\) be two simple graphs on \(V\). We say that \(X\) and \(Y\) are \(G\)-isomorphic if \(Y\) belongs to the orbit of \(X\) under the action of \(G\). One can naturally generalize the reconstruction problems so that when \(G\) is \(S_v\), the symmetric group, we have the usual reconstruction problems. In this paper, we study \(G\)-edge reconstructibility of graphs. We prove some old and new results on edge reconstruction and reconstruction from end vertex deleted subgraphs.

M.A. Seoud1, A.E.I.Abd el Maqsoud1, J. Sheehan2
1Faculty of Science Ain Shams University Abbassia Cairo Egypt
2Department of Mathematical Sciences University of Aberdeen Aberdeen Scotland
Abstract:

Frucht and Salinas [1] conjectured that \(C(k) \cup P(n)\) (\(n \geq 3\)) is graceful if and only if \(k + n \geq 7\). We prove that \(C(2k) \cup P(n)\) is graceful for \(n > k + 1\) (\(k \geq 3\)).

For smaller cases we prove that \(C(2k) \cup P(n)\) is graceful for \(k = 3, 4, 5, 6; n \geq 2\).

Robert B.Gardner1, Coleen Huff2, Janie Kennedy3
1Institute of Mathematical and Physical Sciences East Tennessee State University Johnson City, Tennessee 37614 — 0663
2Department of Mathematics East Tennessee State University in Kingsport Kingsport, Tennessee 37660
3Department of Mathematics and Computer Science Samford University Birmingham, AL 35229
Abstract:

We present necessary and sufficient conditions for the decomposition of the complete symmetric bipartite digraph into each of the orientations of a \(4\)-cycle (in the cases for which such decompositions are not already known). We use these results to find optimal packings of the complete symmetric digraph with each of the orientations of a \(4\)-cycle. Finally, we give necessary and sufficient conditions for the existence of a decomposition of the complete symmetric digraph on \(v\) vertices with a hole of size \(w\) into each of the orientations of a \(4\)-cycle.

Sheng-Chyang Liaw1, David Kuo1, Gerard J.Chang1
1Department of Applied Mathematics National Chiao Tung University Hsinchu 30050, Taiwan
Abstract:

The sum graph of a set \(S\) of positive integers is the graph \(G^+(S)\) having \(S\) as its vertex set, with two distinct vertices adjacent whenever their sum is in \(S\). If \(S\) is allowed to be a subset of all integers, the graph so obtained is called an integral sum graph. The integral sum number of a given graph \(G\) is the smallest number of isolated vertices which when added to \(G\) result in an integral sum graph. In this paper, we find the integral sum numbers of caterpillars, cycles, wheels, and complete bipartite graphs.

David Bedford1, Roger M.Whitaker1
1Department of Mathematics Keele University Keele, Staffordshire, ST5 5BG, U.K.
Abstract:

Let \(k\) Max MOLS\((n)\) denote a maximal set of \(k\) mutually orthogonal Latin squares of order \(n\), and let the parameter triple \((G,n,k)\) denote the existence of a \(k\) Max MOLS\((n)\) constructed from orthogonal orthomorphisms of a group \(G\) of order \(x\). We identify all such parameter triples for all \(G\) of order \(\leq 15\), and report the existence of \(3\) Max MOLS\((n)\) for \(n = 15, 16\) and \(4\) Max MOLS\((n)\) for \(n = 12, 16, 24, 28\). Our work shows that for \(n \leq 15\), all known parameter pairs \((n, k)\) for which there exists a \(k\) Max MOLS\((n)\) can be attained by constructing maximal sets of MOLS from orthomorphisms of groups, except for \(1\) Max MOLS\((n)\), \(n = 5, 7, 9, 13\) and \(2\) Max MOLS\((10)\).

Jend Lehel1, Inessa Levi1
1Department of Mathematics University of Louisville Louisville, KY 40292
Abstract:

An alternating circular list of distinct \(r\)-element subsets of some finite set \(X\) and distinct \(r\)-partitions of type \(\tau\) is said to be a \(\tau\)-loop if successive members of the list are orthogonal. We address the problem of finding complete \(\tau\)-loops including all \(r\)-element subsets of \(X\), for any fixed \(|X|\) and type \(\tau\).

L.H. Clark1, J.W. Moon2
1Southern Illinois University at Carbondale Carbondale, IL 62901-4408 U.S.A.
2University of Alberta Edmonton, Alberta T6G 2G1 Canada
Abstract:

The general Randić index \(w_\alpha(G)\) of a graph \(G\) is the sum of the weights \(( d_G(u) d_G(v))^\alpha\) of all edges \(uv\) of \(G\). We give bounds for \(w_{-1}(T)\) when \(T\) is a tree of order \(n\). We also show that \(lim_{n\to\infty} f(n)/n\) exists, and give bounds for the limit, where \(f(n) = \max\{w_{-1}(T): T\) is a tree of order \(n\)}. Finally, we find the expected value and variance of \(w_\alpha(T)\) for certain families of trees.

Tilla Schade1
1Mathematisches Institut der Justus-Liebig-Universitat Giessen Arndtstr. 2, 35392 Giessen, Germany
Abstract:

The Hermitean forms graphs Her\((n,s)\) are a series of linear distance-regular graphs. The graph Her\((2,3)\) has the coset graph of the shortened ternary Golay code as an antipodal distance-regular cover. We give a new construction for this linear \(3\)-cover of \(Her\((2,3)\) and show that it is unique.

Neil P.Carnes1, Anne Dye1, James F.Reed1
1P.O. Box 92340 McNeese State University Lake Charles, LA 70609-2340
Abstract:

A cyclic triple, \((a, b, c)\), is defined to be the set \(\{(a, b), (b, c), (c, a)\}\) of ordered pairs. A Mendelsohn triple system of order \(v\), MTS\((v)\), is a pair \((M, \beta)\), where \(M\) is a set of \(v\) points and \(\beta\) is a collection of cyclic triples of pairwise distinct points of \(M\) such that any ordered pair of distinct points of \(M\) is contained in precisely one cyclic triple of \(\beta\). An antiautomorphism of a Mendelsohn triple system, \((M, \beta)\), is a permutation of \(M\) which maps \(\beta\) to \(\beta^{-1}\), where \(\beta^{-1} = \{(c, b, a) \mid (a, b, c) \in \beta\}\). In this paper, we give necessary and sufficient conditions for the existence of a Mendelsohn triple system of order \(v\) admitting an antiautomorphism consisting of two cycles of equal length and having \(0\) or \(1\) fixed points.

Jason E.Fulman1, Michael D.Galloy2, Gary J.Sherman3, Jeffrey M.Vanderkam4
1Harvard University, Cambridge MA 02138 (USA)
2University of Kentucky, Lexington KY 40506 (USA)
3Rose-Hulman Institute of Technology, Terre Haute IN 47803 (USA)
4Princeton University, Princeton NJ 08544 (USA)
Abstract:

Let \(G\) be a finite group and let \(\nu_i(G)\) denote the proportion of ordered pairs of \(G\) that generate a subgroup of nilpotency class \(i\). Various properties of the \(\nu_i(G)\)’s are established. In particular, it is shown that \(\nu_i(G) = k_i |G|/|G|^2\) for some non-negative integer \(k_i\) and that \(\sum_{i=1}^{\infty}\nu_i\) is either \(1\) or at most \(\frac{1}{2}\) for solvable groups.

Leonid M.Koganov1, Valery A.Liskovets2, Timothy R.S. Walsh3
1Center of Nonlinear Mechanics and Technology Russian Academy of Sciences 117334, Moscow, RUSSIA
2Institute of Mathematics, National Academy of Sciences 220072, Minsk, BELARUS
3Département D’Informatique Université du Québec A Montréal Montréal (Québec), CANADA, H3C 3P8
Abstract:

Two combinatorial identities are proved:
(1) \(\quad H_n(\varepsilon) = \frac{n+2}{3} M_n(\varepsilon)\), where \(H_n(\varepsilon)\) denotes the total number of vertices in all the n-edged rooted planar Eulerian maps and \(M_n(\varepsilon)\) denotes the number of such maps.
(2) \(\quad H_n(\mathcal{L}) = \frac{5n^2+13n+2}{2(4n+1)} M_{n }(\mathcal{L})\), where \(H_n(\mathcal{L})\) and \(M_{n}(\mathcal{L})\) are defined similarly for the class \(\mathcal{L}\) of loopless maps.
Simple closed formulae for \(M_n(\varepsilon)\) and \(M_{n}(\mathcal{L})\) are well known, and they correspond to equivalent binomial sum identities.

Yi-Liang Chen1, Wei-Hou Cheng1
1Department of Mathematics Tamkang University Tamsui, Taiwan 251, R.O.C.
Abstract:

We derive the exact joint distribution and prove the asymptotic joint normality of the numbers of peaks, double rises, troughs, and double falls in a random permutation. A Chi-square randomness test, as a by-product, is also proposed.

Wayne Goddard1, Ortrud R.Oellermann2, Peter J.Slater3, Henda C.Swart1
1University of Natal, Durban
2University of Winnipeg
3University of Alabama, Huntsville
Abstract:

For a graph \(G\) with vertex set \(V\), the total redundance, \(\text{TR}(G)\), and efficiency, \(\text{F}(G)\), are defined by the two expressions:
\(\text{TR}(G) = \min \left\{ \sum_{v \in S} (1 + \deg v) :S\subseteq V \text{and} [N(x) \cap S] \geq 1 \quad \forall x \in V \right\},\)
\(\text{F}(G) = \max \left\{ \sum_{v \in S} (1 + \deg v) :S\subseteq V \text{and} [N(x) \cap S] \leq 1 \quad \forall x \in V \right\}.\)
That is, \(\text{TR}\) measures the minimum possible amount of domination if every vertex is dominated at least once, and \(\text{F}\) measures the maximum number of vertices that can be dominated if no vertex is dominated more than once.

We establish sharp upper and lower bounds on \(\text{TR}(G)\) and \(\text{F}(G)\) for general graphs \(G\) and, in particular, for trees, and briefly consider related Nordhaus-Gaddum-type results.

I. Cahit1, R. Yilmaz1
1Department of Mathematics and Computer Science Eastern Mediterranean University G. Magosa, North Cyprus
Abstract:

In this paper, generalizations of edge-cordial labelings are introduced and studied for special classes of trees and graphs.

Dragan M.Acketa1, Vojislay Mudrinski1, Snezana Matic-Kekic1
1Institute of Mathematics, Trg D.Obradoviéa 4, 21000 Novi Sad, Yugoslavia
Abstract:

The total of \(4079\) \(2\)-designs and two \(3\)-designs on \(21\) points have been found. All these designs have the same group as an automorphism group. This group can be represented as the wreath product of \(G\) and \(H\), where \(G\) denotes the subgroup of order 3 of \(\text{PSL}(2,2)\) and \(H\) denotes the transitive subgroup of order 21 of \(\text{PSL}(3, 2)\).

In particular, \(1, 20, 101, 93, 173, 824\) and \(2867\) values of \(A\) for \(2\)-\((21,k,\lambda)\) designs have been detected, where \(k\) takes values from \(4\) through \(10\). Up to our knowledge, \(2217\) of these \(\lambda\)-values are new (\(14, 76, 65, 122, 587\), and \(1353\), for \(k\) equal to \(5, 6, …,10\), respectively). By Alltop’s extension [4], \(1353\) new \(2\)-\((21,10,A)\) designs can be extended to the same number of new \(3\)-\((22,11,\lambda)\) designs.

An extensive search with \(t > 2\) and \(k < 8\) has given only the \(3\)-\((21,6,216)\) design and the \(3\)-\((21,7,1260)\) design with the same automorphism group.

Christos Koukouvinos1, Jennifer Seberry2
1Department of Mathematics National! Technical University of Athens Zografou 15773, Athens Greece
2Department of Computer Science University of Wollongong NSW 2522 Australia
Abstract:

We give new sets of sequences with zero autocorrelation function and entries from the set \(\{0, \pm a, \pm b, \pm c\}\) where \(a, b\) and \(c\) are commuting variables (which may also be set zero). Then we use these sequences to construct some new orthogonal designs.

We show the known necessary conditions for the existence of an OD\((28; s_1, s_2, s_3)\) plus the condition that \((s_1, s_2, s_3) \neq (1, 5, 20)\) are sufficient conditions for the existence of an OD\((28; s_1, s_2, s_3)\). We also show the known necessary conditions for the existence of an OD\((28; s_1, s_2, s_3)\) constructed using four circulant matrices are sufficient conditions for the existence of 4-NPAF\((s_1, s_2, s_3)\) of length 2 for all lengths \(n \geq 7\).

We establish asymptotic existence results for OD\((4N; s_1, s_2)\) for \(3 \leq s_1 + s_2 \leq 28\). This leaves no cases undecided for \(1 \leq s_1 + s_2 \leq 28\). We show the known necessary conditions for the existence of an OD\((28; s_1, s_2)\) with \(25 \leq s_1 + s_2 \leq 28\), constructed using four circulant matrices, plus the condition that \((s_1, s_2) \neq (1, 26), (2, 25), (7, 19), (8, 19)\) or \((13, 14)\), are sufficient conditions for the existence of 4-NPAF\((s_1, s_2)\) of length \(n\) for all lengths \(n \geq 7\).

David Vickrey1
1Stanford University P.O. Box 13114 Stanford, CA 94309
Abstract:

Let \(G = G(V, E)\) be a graph. A labeling of \(G\) is a function \(f: V \to \{0, 1, \ldots, n\}\) such that for each edge \(e = (u, v) \in E\), \(f(e) = |f(u) – f(v)|\). Such a labeling is said to be \(k\)-equitable if it is a labeling of the vertices with the numbers \(0\) through \(k – 1\) such that, if \(v_i\) is the number of vertices labeled \(i\), and \(e^i\) is the number of edges labeled \(i\), then \(|v^i – v^j| < 1\) and \(|e^i – e^j| \leq 1\) for all \(i, j\). A graph is said to be \(k\)-equitable if it has a \(k\)-equitable labeling. In this paper, we characterize the \(k\)-equitability of complete bipartite graphs and consider the equitability of complete multipartite graphs.

Hirobumi Mizuno1, Iwao Sato2
1Department of Computer Science and Information Mathematics University of Electro-Communications 1-5-1, Chofugaoka, Chofu Tokyo 182 Japan
2Oyama National College of Technology Oyama Tochigi 323 Japan
Abstract:

Let \(D\) be a connected symmetric digraph, \(A\) a finite abelian group with some specified property and \(g \in A\). We present a characterization for two \(g\)-cyclic \(A\)-covers of \(D\) to be isomorphic with respect to a group \(\Gamma\) of automorphisms of \(D\), for any \(g\) of odd order. Furthermore, we consider the number of \(\Gamma\)-isomorphism classes of \(g\)-cyclic \(A\)-covers of \(D\) for an element \(g\) of odd order. We enumerate the number of isomorphism classes of \(g\)-cyclic \({Z}_{p^n}\)-covers of \(D\) with respect to the trivial group of automorphisms of \(D\), for any prime \(p (> 2)\), where \(\mathbb{Z}_{p^n}\) is the cyclic group of order \(p^n\). Finally, we count \(\Gamma\)-isomorphism classes of cyclic \({F}_p\)-covers of \(D\).

H. L. Fu1, C. A. Rodger2, D. G. Sarvate3
1Department of Applied Mathematics National Chiao-Tung University Hsin-Chu, Taiwan Republic of China
2Department of Discrete and Statistical Sciences 120 Math Annex Auburn University, Alabama USA 36849-5307
3Department of Mathematics University of Charleston Charleston, SC 29424
Abstract:

We completely settle the existence problem for group divisible designs with first and second associates in which the block size is \(3\), and with \(m\) groups each of size \(n\), where \(n, m \geq 3\).

Wun-Seng Chou1, Peter Jau-Shyong Shiue2
1Institute of Mathematics, Academia Sinica, Nankang, Taipei, Taiwan 11529, R.O.C.
2Department of Mathematical Sciences, University of Nevada, Las Vegas, Las Vegas, NV 89154, U.S.A.
Abstract:

We give a new and simple proof for the cyclic group of line crossings on the \(2-D\) torus.

Robert C.Brigham1, Julie R.Carrington2, Richard P.Vitray2
1Department of Mathematics, University of Central Florida
2Department of Mathematical Sciences, Rollins College
Abstract:

An abdiff-tolerance competition graph, \(G = (V, E)\), is a graph for which each vertex \(i\) can be assigned a non-negative integer \(t_i\); and at most \(|V|\) subsets \(S_j\) of \(V\) can be found such that \(xy \in E\) if and only if \(x\) and \(y\) lie in at least \(|t_x – t_y|\) of the sets \(S_j\). If \(G\) is not an abdiff-tolerance competition graph, it still is possible to find \(r > |V|\) subsets of \(V\) having the above property. The integer \(r – |V|\) is called the abdiff-tolerance competition number. This paper determines those complete bipartite graphs which are abdiff-tolerance competition graphs and finds an asymptotic value for the abdiff-tolerance competition number of \(K_{l,n}\).

E-mail Alert

Add your e-mail address to receive upcoming issues of Ars Combinatoria.

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;