Terry S.Griggs1, Eric Mendelsohn2, Alexander Rosa3
1 Department of Mathematics and Statistics Lancashire Polytechnic Preston PR1 2TQ England
2 Department of Mathematics University of Toronto Toronto, Ontario Canada MSS 1A1
3Department of Mathematics and Statistics McMaster University Hamilton, Ontario Canada L8S 4K1
J.E. Simpson1
1 Department of Mathematics University of Kentucky Lexington, KY 40506 U.S.A.
Abstract:

Certain graphs whose vertices are some collection of subsets of a fixed \(n\)-set, with edges determined by set intersection in some way, have long been conjectured to be Hamiltonian. We are particularly concerned with graphs whose vertex set consists of all subsets of a fixed size \(k\), with edges determined by empty intersection, on the one hand, and with bigraphs whose vertices are all subsets of either size \(k\) or size \(n-k\), with adjacency determined by set inclusion, on the other. In this note, we verify the conjecture for some classes of these graphs. In particular, we show how to derive a Hamiltonian cycle in such a bigraph from a Hamiltonian path in a quotient of a related graph of the first kind (based on empty intersection). We also use a recent generalization of the Chvatal-Erdos theorem to show that certain of these bigraphs are indeed Hamiltonian.

Adam Malinowski1
1Institute of Informatics Warsaw University
Abstract:

We determine the minimal number of queries sufficient to find an unknown integer \(x\) between \(1\) and \(n\) if at most one answer may be erroneous. The admissible form of query is: “Which one of the disjoint sets \(A_1, \ldots, A_k\) does \(x\) belong to?”

Jianxing Yin1
1Dept. of Mathematics of Suzhou University Suzhou, 215006 PBR. of China
Abstract:

A \(\lambda\)-packing of pairs by quintuples of a \(v\)-set \(V\) is a family of \(5\)-subsets of \(V\) (called blocks) such that every \(2\)-subset of \(V\) occurs in at most \(\lambda\) blocks. The packing number is defined to be the maximum number of blocks in such a \(\lambda\)-packing. These numbers are determined here for \(\lambda \equiv 0 \mod 4\) and all integers \(v \geq 5\) with the exceptions of \((v, \lambda) \in \{(22, 16), (22, 36), (27, 16)\}\).

G.B. Ehosrovshahi 1, F. Vatan2
1Center for Theoretical Phyaics and Mathematics Atomic Energy Organisation of Iran and Department of Mathematica and Computer Science University of Tehran Tehran, Iran
2Center for Theoretical Physics and Mathematics Atomic Energy Organization of Iran and Department of Mathematica Isfahan University of Technology Isfahan, Iran
Abstract:

Recently, there has been substantial interest in the problem of the spectrum of possible support sizes of different families of BIB designs. In this paper, we first prove some theorems concerning the spectrum of any \(t\)-design with \(v = 2k\) and \(k = t + 1\), and then we study the spectrum of the case \(4-(10, 5, 6m)\) in more detail.

F Gobel 1
1 Department of Applied Mathematics University of Twente 7500 AE Enschede The Netherlands
Abstract:

We obtain bounds for the separation number of a graph in terms of simpler parameters. With the aid of these bounds, we determine the separation number for various special graphs, in particular multiples of small graphs. This leads to concepts like robustness and asymptotic separation number.

Jianxing Yin1, Kejun Chen1
1 Department of Mathematics Suzhou University Suzhou 215006, P.R. of China
Abstract:

A.M. Assaf, A. Hartman, and N. Shalaby determined in [1] the packing numbers \(\sigma(v, 6, 5)\) for all integers \(v \geq 6\), leaving six open cases of \(v = 41, 47, 53, 59, 62,\) and \(71\). In this paper, we deal with these open cases and thus complete the packing problem.

Erich Prisner1
1Mathematisches Seminar der Universitat Hamburg, Bundesstr. 55, 2000 Hamburg 13, F.R. Germany
Abstract:

A hypergraph \(H\) is called connected over a graph \(G\) with the same vertex set as \(H\) if every hyperedge of \(H\) induces a connected subgraph in \(G\). A graph \(F\) is representable in the graph \(G\) if there is some hypergraph \(H\) which is connected over \(G\) and has \(F\) as its intersection graph. Generalizing the well-known problem of representability in forests, the following problems are investigated: Which hypergraphs are connected over some \(n\)-cyclomatic graph, and which graphs are representable in some \(n\)-cyclomatic graph, for any fixed integer \(n\)? Several notions developed in the theory of subtree hypergraphs and chordal graphs (i.e. in the case \(n = 0\)) yield necessary or sufficient conditions, and in certain special cases even characterizations.

Lowell W Beineke1, Michael A Henning2
1 Indiana University—Purdue University at Fort. Wayne
2 University of Natal, Pietermaritzburg
Abstract:

Let \(s\) and \(r\) be positive integers with \(s \geq r\) and let \(G\) be a graph. A set \(I\) of vertices of \(G\) is an \((r, s)\)-set if no two vertices of \(I\) are within distance \(r\) from each other and every vertex of \(G\) not in \(I\) is within distance \(s\) from some vertex of \(I\). The minimum cardinality of an \((r, s)\)-set is called the \((r, s)\)-domination number and is denoted by \(i_{r,s}(G)\). It is shown that if \(G\) is a connected graph with at least \(s > r \geq 1\) vertices, then there is a minimum \((r,s)\)-set \(I\) of \(G\) such that for each \(v \in I\), there exists a vertex \(w \in V(G) – I\) at distance at least \(s-r\) from \(v\), but within distance \(s\) from \(v\), and at distance greater than \(s\) from every vertex of \(I – \{v\}\). Using this result, it is shown that if \(G\) is a connected graph with \(p \geq 9 \geq 2\) vertices, then \(i_{r,s}(G) < p/s\) and this bound is best possible. Further, it is shown that for \(s \in \{1,2,3\}\), if \(T\) is a tree on \(p \geq s +1\) vertices, then \(i_{r,s}(T) \leq p/(s +1)\) and this bound is sharp.

Raul Figueroa1, Pablo M.Salzbergt1
1 Department of Mathematics University of Puerto Rico P.O. Box 23355, Rio Piedras Puerto Rico 00931
Abstract:

We consider the problem of finding the intersection points of a pencil of lines with rational slope on the \(2\)-dimensional torus. We show that the intersection points belonging to all the lines in the pencil form a finite cyclic group. We also exhibit a generator for this group in terms of the coefficients of the lines. The need for the results presented in this paper arose in dealing with a discrete limited angle model for computerized tomography \((Cf. [3], [5])\).

BERNHARD GANTER1, Hans-Dietrich O.F.GRONAU2, RONALD C.MULLIN 3
1Technische Universitat Dresden Institut fiir Algebra Mommeensir. 13, 01062 Dresden, Germany
2 Universitat Rostock Fachbereich Mathematik Universitatsplatz 1, 18051 Rostock, Germany
3University of Waterloo Department of Combinatorics & Optimization Waterloo, Ontario, N2L 3G1, Canada
Abstract:

An orthogonal double cover of the complete graph \(K_n\) is a collection of \(n\) spanning subgraphs \(G_1, G_2, \ldots, G_n$ of \(K_n\) such that every edge of \(K_n\) belongs to exactly 2 of the \(G_i\)’s and every pair of \(G_i\)s intersect in exactly one edge.
It is proved that an orthogonal double cover exists for all \(n \geq 4\), where the \(G_i\)’s consist of short cycles; this result also proves a conjecture of Chung and West.

Gary Chartrand1, Joseph McCanna1, Naveed Sherwani2, Moazzem Hossain3, Jahangir Hashmi4
1 Department of Mathematics and Statistics
2 Department of Computer Science Western Michigan University Kalamazoo, MI 49008
3 Department of Computer Science Western Michigan University Kalamazoo, MI 49008
4 Advanced Micro Devices, Inc. Santa Clara, CA 95054
Abstract:

The induced path number of a graph \(G\) is the minimum number of subsets into which the vertex set of \(G\) can be partitioned so that each subset induces a path. The induced path number is investigated for bipartite graphs. Formulas are presented for the induced path number of complete bipartite graphs and complete binary trees. The induced path number of all wheels is determined. The induced path numbers of meshes, hypercubes, and butterflies are also considered.

D.A. Preece1
1 Institute of Mathematics and Statistics Cornwallis Building The University Canterbury, Kent England CT2 7NF
Abstract:

Triple Youden rectangles are defined and examples are given. These combinatorial arrangements constitute a special class of \(k \times v\) row-and-column designs, \(k < v\), with superimposed treatments from three sets, namely a single set of \(v\) treatments and two sets of \(k\) treatments. The structure of each of these row-and-column designs incorporates that of a symmetrical balanced incomplete block design with \(v\) treatments in blocks of size \(k\). Indeed, when either of the two sets of \(k\) treatments is deleted from a \(k \times v\)  triple Youden rectangle, a \(k \times v\) double Youden rectangle is obtained; when both are deleted, a \(k \times v\) Youden square remains. The paper obtains an infinite class of triple Youden rectangles of size \(k \times (k+1)\). Then it presents a \(4 \times 13\) triple Youden rectangle which provides a balanced layout for two packs of playing-cards, and a \(7 \times 15\) triple Youden rectangle which incorporates a particularly remarkable \(7 \times 15\) Youden square. Triple Youden rectangles are fully balanced in a statistical as well as a combinatorial sense, and those discovered so far are statistically very efficient.

PD. Johnson Jr. 1
1Department of Algebra, Combinatorics, and Analysis Auburn University Auburn, Alabama U.S.A. 36849-5307
Abstract:

The Hall-condition number \(s(G)\) of a graph \(G\) is defined and some of its fundamental properties are derived. This parameter, introduced in [6], bears a certain relation to the chromatic number \(\chi(G)\) and the choice number \(c(G)\) (see [3] and [7]).

One result here, that \(\chi(G) – s(G)\) may be arbitrarily large, solves a problem posed in [6].

Yung-Ling Lai1, Jiugiang Liu1, Kenneth Williams1
1Western Michigan University Kalamazoo, Michigan U.S.A. 49008
Abstract:

The sum of a set of graphs \(G_1,G_2,\ldots,G_k\), denoted \(\sum_{k=1}^k G_i\), is defined to be the graph with vertex set \(V(G_1)\cup V(G_2)\cup…\cup V(G_k)\) and edge set \(E(G_1)\cup E(G_2)\cup…\cup E(G_k) \cup \{uw: u \in V(G_i), w \in V(G_j) for i \neq j\}\). In this paper, the bandwidth \(B\left(\sum_{k=1}^k G_i\right)\) for \(|V(G_i)| = n_i \geq n_{i+1}=|v(G_{i+1})|,(1 \leq i < k)\) with \(B(G_1) \leq {\lceil {n_1/2}\rceil} \) is established. Also, tight bounds are given for \(B\left(\sum_{k=1}^k G_i\right)\) in other cases. As consequences, the bandwidths for the sum of a set of cycles, a set of paths, and a set of trees are obtained.

Tan Anderson1, Norman J.Finizio2
1 Department of Mathematics University of Glasgow Glasgow, Scotland G12 8QW
2 Department of Mathematics University of Rhode Island Kingston, RI 02881
Abstract:

The main result of this study is that if \(p,q\) are primes such that \(q \equiv 3 (mod 4),q \leq 7,p \equiv 1 (mod 4), hef(q-1,p^{n-1} (p – 1)) =2\) and if there exists a Z-cyclic Wh(q+ 1) then a Z-cyclic Wh\(( qp^n + 1)\) exists forall \(n \geq 0\). As an ingredient sufficient for this result we prove a version of Mann’s Lemma in the ring \(Z_{qp^n}\).

D.F. Hsu1, H. Shen2
1Department of Computer and Information Science Fordham University Bronx, New York U.S.A. 10458-5198
2Department of Applied Mathematics Shanghai Jiao Tong University Shanghai 200030 China
Abstract:

In this paper we study the existence of perfect Mendelsohn designs without repeated blocks and give several general constructions. We prove that for \(k = 3\) and any \(\lambda\), and \((k,\lambda) = (4,2),(4,3)\) and \((4,4)\), the necessary conditions are also sufficient for the existence of a simple \((v,k,\lambda)\)-PMD, with the exceptions \((k,\lambda) = (6,1)\) and \((6,3)\).

Chris Chames 1
1 Department of Mathematics and Mathematical Studies 16 Mill Lane Cambridge 2CB 1SB England
Taojun Lu1, Han Ren2
1Institute of Applied Mathematics Academia Sinica Beijing, China
2 Department of Mathematics Yunnan Normal University Kunming, China
Abstract:

A connected balanced bipartite graph \(G\) on \(2n\) vertices is almost vertex bipancyclic (i.e., \(G\) has cycles of length \(6, 8, \ldots, 2n\) through each vertex of \(G\)) if it satisfies the following property \(P(n)\): if \(x, y \in V(G)\) and \(d(x, y) = 3\) then \(d(x) + d(y) \geq n + 1\). Furthermore, all graphs except \(C_4\) on \(2n\) (\(n \geq 3\)) vertices satisfying \(P(n)\) are bipancyclic (i.e., there are cycles of length \(4, 6, \ldots, 2n\) in the graph).

John Mitchem1, Andrew Simoson2
1 Mathematics & Computer Science Departinent San Jose State University San Jose, CA 95192
2 King College Bristol, TN 37620
Marko Petkovsek1
1 Department of Mathematics and Mechanics University of Ljubljana Jadranska 19, 61111 Ljubljana, Republic of Slovenia
Abstract:

Let \(T(m,n)\) denote the number of \(m \times n\) rectangular standard Young tableaux with the property that the difference of any two rows has all entries equal. Let \(T(n) = \sum\limits_{d|n} T(d,n/d)\). We find recurrence relations satisfied by the numbers \(T(m,n)\) and \(\hat{T}(n)\), compute their generating functions, and express them explicitly in some special cases.

Guo-Hui Zhang1
1Department of Mathematics _Sonoma State University Rohnert Park, CA 94928
Abstract:

A labeling (function) of a graph \(G\) is an assignment \(f\) of nonnegative integers to the vertices of \(G\). Such a labeling of \(G\) induces a labeling of \(L(G)\), the line graph of \(G\), by assigning to each edge \(uv\) of \(G\) the label \(\lvert f(u) – f(v)\rvert\). In this paper we investigate the iteration of such graph labelings.

Zbigniew J.Palka1,2, Joel E. Cohen3,4
1 Department of Discrete Mathematics, Adam Mickiewicz University, Matejki 48/49, 60-769 Poznaii, Poland.
2Rockefeller Univerity 1230 York Avenue New York, NY 10021-6399
3Rockefeller Univerity 1230 York Avenue New York, NY 10021-6399
4Institute for Advanced Study Olden Lane Princeton, NJ 08540, U.S.A.
Zsuzsanna Szaniszlo1,2
1Department of Mathematics University of Nebraska-Lincoln 810 Oldfather Hall Lincoln,NE 68588
2 Department of Mathematics Kossuth University 4010 Debrecen, Hungary
Abstract:

In this thesis we examine the \(k\)-equitability of certain graphs. We prove the following: The path on \(n\) vertices, \(P_n\), is \(k\)-equitable for any natural number \(k\). The cycle on \(k\) vertices, \(C_n\), is \(k\)-equitable for any natural number \(k\), if and only if all of the following conditions hold:\(n \neq k\); if \(k \equiv 2, 3 \pmod{4}\) then \(n \neq k-1\);if \(k \equiv 2, 3 \pmod{4}\) then \(n \not\equiv k\pmod{2k}\) The only \(2\)-equitable complete graphs are \(K_1\), \(K_2\), and \(K_3\).
The complete graph on \(n\) vertices, \(K_n\), is not \(k\)-equitable for any natural number \(k\) for which \(3 \leq k < n\). If \(k \geq n\), then determining the \(k\)-equitability of \(K_n\) is equivalent to solving a well-known open combinatorial problem involving the notching of a metal bar.The star on \(n+1\) vertices, \(S_n\), is \(k\)-equitable for any natural number \(k\). The complete bipartite graph \(K_{2,n}\) is \(k\)-equitable for any natural number \(k\) if and only if \(n \equiv k-1 \pmod{k}\); or \(n \equiv 0, 1, \ldots, [ k/2 ] – 1 \pmod{k}\);or \(n = \lfloor k/2 \rfloor\) and \(k\) is odd.

Vladimir Cepulié1
1Elektrotehnitki fakultet, pp. 170 Unska 3 41000 Zagreb, Croatia
Elizabeth D.Boyer1, Donald L.Kreher2, Stanislaw P.Radziszowski3, Alexander Sidorenko4
1 Department of Mathematics University of Wyoming Laramie, Wyoming 82071
2 Department of Mathematical Sciences Michigan Technological University Houghton, Michigan 49931
3School of Computer Science Rochester Institute of Technology Rochester, New York 14623
4 Courant Institute of Mathematical Sciences New York University New York, N.Y. 10012
Abstract:

The minimal number of triples required to represent all quintuples on an \(n\)-element set is determined for \(n \leq 13\) and all extremal constructions are found. In particular, we establish that there is a unique minimal system on 13 points, namely the 52 collinear triples of the projective plane of order 3.

Yeong-Nan Yeh 1
1Institute of Mathematics, Academia Sinica Taipei, Taiwan 11529, Republic of China
Abstract:

A set \(T\) with a binary operation \(+\) is called an operation set and denoted as \((T, +)\). An operation set \((S, +)\) is called \(q\)-free if \(qx \notin S\) for all \(x \in S\). Let \(\psi_q(T)\) be the maximum possible cardinality of a \(q\)-free operation subset \((S, +)\) of \((T, +)\).

We obtain an algorithm for finding \(\psi_q({N}_n)\), \(\psi_q({Z}_n)\) and \(\psi_q(D_n)\), \(q \in {N}\), where \({N}_n = \{1, 2, \ldots, n\}\), \(( {Z}_n, +_n)\) is the group of integers under addition modulo \(n\) and \((D_n, +_n)\) is the dihedral group of order \(2n\).

E-mail Alert

Add your e-mail address to receive upcoming issues of Ars Combinatoria.

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;