Dingjun Lou1, Wei Wang1
1 Department of Computer Science Zhongshan University Guangzhou 510275 People’s Republic of China
Abstract:

In this paper, we develop a polynomial time algorithm to determine the cyclic edge connectivity of a \(k\)-regular graph for \(k \geq 3\). The time complexity of the algorithm is bounded by \(O(k^{11}|V|^8)\), in particular, it is \(O(|V|^8)\) for cubic graphs.

Paul A.Russell1
1Department of Pure Mathematics and Mathematical Statistics, Centre for Mathe matical Sciences, Wilberforce Road, Cambridge CB3 OWB, England.
Abstract:

For each integer \(m \geq 1\), consider the graph \(G_m\) whose vertex set is the set \(\mathbb{N} = \{0,1,2,\ldots\}\) of natural numbers and whose edges are the pairs \(xy\) with \(y = x+m\), \(y = x-m\), \(y = mx\), or \(y = \frac{x}{m}\). Our aim in this note is to show that, for each \(m\), the graph \(G_m\) contains a Hamilton path. This answers a question of Lichiardopol.

Peter Jenkins1
1Centre for Discrete Mathematics and Computing, Department of Mathematics, The University of Queensland, Queensland 4072, AUSTRALIA
Abstract:

Given a partial \(K_4\)-design \((X, {P})\), if \(x \in X\) is a vertex which occurs in exactly one block of \({P}\), then call \(x\) a free vertex. In this paper, a technique is described for obtaining a cubic embedding of any partial \(K_4\)-design with the property that every block in the partial design contains at least two free vertices.

P. Dankelmann1, L. Volkmann2
1School of Mathematical and Statistical Sciences University of Natal, Durban, South Africadankelma@nu.ac.za
2Lehrstuhl II fiir Mathematik RWTH-Aachen, Germany
Abstract:

The average distance \(\mu(D)\) of a strong digraph \(D\) is the average of the distances between all ordered pairs of distinct vertices of \(D\). Plesnik \([6]\) proved that if \(D\) is a strong tournament of order \(n\), then \(\mu(D) \leq \frac{n+4}{6} + \frac{1}{n}\). In this paper, we show that if \(D\) is a \(k\)-connected tournament of order \(n\), then \(\mu(D) \leq \frac{n}{6k} + \frac{19}{6} + \frac{k}{n}\). We demonstrate that, apart from an additive constant, this bound is best possible.

Nandor Sieben1
1DEPARTMENT OF MATHEMATICS, NORTHERN ARIZONA UNIVERSITY, Fiaastarr, AZ 86011-5717
Abstract:

A subset \(U\) of a set \(S\) with a binary operation is called avoidable if \(S\) can be partitioned into two subsets \(A\) and \(B\) such that no element of \(U\) can be written as a product of two distinct elements of \(A\) or as the product of two distinct elements of \(B\). The avoidable sets of the bicyclic inverse semigroup are classified.

Kwang-Wu Chen1
1Department of Mathematics & Computer Science Education, Taipei Municipal Teachers College, No. 1, Ai-Kuo West Road, Taipei, Taiwan 100, R.O.C.
Abstract:

Let \(\alpha, \beta\) be any numbers. Given an initial sequence \(a_{0,m}\) (\(m = 0,1,2,\ldots\)), define the sequences \(a_{n,m}\) (\(n \geq 1\)) recursively by

\[a_{n,m} = \alpha a_{n-1,m} + \beta a_{n-1,m+1}; \quad \text{for n} \geq 1, m \geq 0.\]

Let \(\alpha, \beta\) be any numbers. Given an initial sequence \(a_{0,m}\) (\(m = 0,1,2,\ldots\)), define the sequences \(a_{n,m}\) (\(n \geq 1\)) recursively by

\[a_{n,m} = \alpha a_{n-1,m} + \beta a_{n-1,m+1}; \quad \text{for n} \geq 1, m \geq 0.\]

We call the matrix \((a_{n,m})_{n,m\geq 0}\) an generalized Seidel matrix with a parameter pair \((\alpha, \beta)\). If \(\alpha = \beta = 1\), then this matrix is the classical Seidel matrix. For various different parameter pairs \((\alpha, \beta)\) we will impose some evenness or oddness conditions on the exponential generating functions of the initial sequence \(a_{0,m}\) and the final sequence \(a_{n,0}\) of a generalized Seidel matrix (i.e., we require that these generating functions or certain related functions are even or odd). These conditions imply that the initial sequences and final sequences are equal to well-known classical sequences such as those of the Euler numbers, the Genocchi numbers, and the Springer numbers.

As applications, we give a straightforward proof of the continued fraction representations of the ordinary generating functions of the sequence of Genocchi numbers. And we also get the continued fractions representations of the ordinary generating functions of the Genocchi polynomials, Bernoulli polynomials, and Euler polynomials. Lastly, we give some applications of congruences for the Euler polynomials.

Mahesh Andar1, Samina Boxwala1, N.B. Limaye2
1Department of Mathematics N. Wadia College, Pune,411001.
2Department of Mathematics University of Mumbai Vidyanagari, Mumbai 400098
Abstract:

Let \(G\) be a simple graph with vertex set \(V\) and edge set \(E\). A vertex labeling \(f: V \to \{0,1\}\) induces an edge labeling \(\overline{f}: E \to \{0,1\}\) defined by \(\overline{f}(uv) = |f(u) – f(v)|\). Let \(v_f(0), v_f(1)\) denote the number of vertices \(v\) with \(f(v) = 0\) and \(f(v) = 1\) respectively. Let \(e_f(0), e_f(1)\) be similarly defined. A graph is said to be cordial if there exists a vertex labeling \(f\) such that \(|v_f(0) – v_f(1)| \leq 1\) and \(|e_f(0) – e_f(1)| \leq 1\).

In this paper, we give necessary and sufficient conditions for the cordiality of the \(t\)-ply \(P_t(u,v)\), i.e. a thread of ply number \(t\).

Koichi Betsumiya1, YoungJu Choie2
1Jobu University, 634-1 Iaesaki, Japan
2Department of Mathematics Pohang University of Science and Technology Pohang 790-784, Korea
Abstract:

A Jacobi polynomial was introduced by Ozeki. It corresponds to the codes over \(\mathbb{F}_2\). Later, Bannai and Ozeki showed how to construct Jacobi forms with various index using a Jacobi polynomial corresponding to the binary codes. It generalizes Broué-Enguehard map. In this paper, we study Jacobi polynomial which corresponds to the codes over \(\mathbb{F}_{2f}\). We show how to construct Jacobi forms with various index over the totally real field. This is one of extension of Broué-Enguehard map.

J.M. Marin1, A. Marquez 1, M.P. Revuelta1
1Departamento de Matematica Aplicada I. Universidad de Sevilla (Spain).
Abstract:

The paper contains two main results. First, we obtain the chromatic polynomial on the \(n \times m\) section of the square lattice, solving a problem proposed by Read and Tutte \([5]\), the chromatic polynomial of the bracelet square lattice, and we find a recurrent-constructive process for the matrices of the \(k\)-colourings. The key concept for obtaining the inductive method is the compatible matrix.

Our second main result deals with the compatible matrix as the adjacency matrix of a graph. This represents a family of graphs, which is described.

Huaming Xing1, Liang Sun2, Xuegang Chen3
1Dept. of Mathematics, Langfang Teachers College, Langfang, Hebei 065000, China;
2Dept. of Mathematics, Beijing Institute of Technology, Beijing 100081, China;
3The College of Info. Sci. & Eng., Shandong University of Sci. & Tech., Taian 271019, China
Abstract:

Let \(G = (V, E)\) be a simple graph. For any real valued function \(f: V \to \mathbb{R}\), the weight of \(f\) is defined as \(f(V) = \sum f(v)\), over all vertices \(v \in V\). For positive integer \(k\), a total \(k\)-subdominating function (TkSF) is a function \(f: V \to \{-1,1\}\) such that \(f(N(v)) \geq k\) for at least \(k\) vertices \(v\) of \(G\). The total \(k\)-subdomination number \(\gamma^t_{ks}(G)\) of a graph \(G\) equals the minimum weight of a TKSF on \(G\). In the special case where \(k = |V|\), \(\gamma^t_{ks}(G)\) is the signed total domination number \([5]\). We research total \(k\)-subdomination numbers of some graphs and obtain a few lower bounds of \(\gamma^t_{ks}(G)\).

Endre Boros1, Vladimir Gurvich2, Ying Liu3
1RUTCOR, Rutgers University, 640 Bartholomew Road, Piscataway, NJ 08854 USA.
2FRUTCOR, Rutgers University, 640 Bartholomew Road, Piscataway, NJ 08854 USA.
3School of Science, University of Ontario Institute of Technology, 2000 Simcoe St. N., Oshawa, ON L1H 7K4 Canada.
Abstract:

A convex hull of a set of points \(X\) is the minimal convex set containing \(X\). A box \(B\) is an interval \(B = \{x | x \in [a,b], a,b \in \mathbb{R}^n\}\). A box hull of a set of points \(X\) is defined to be the minimal box containing \(X\). Because both convex hulls and box hulls are closure operations of points, classical results for convex sets can naturally be extended for box hulls. We consider here the extensions of theorems by Carathéodory, Helly, and Radon to box hulls and obtain exact results.

Nam-Po Chiang 1, Mao-Feng Huang2
1Department of Applied Mathematics Tatung University, Taipei, Taiwan, ROC.
2Department of Applied Mathematics Tatung University, Taipei, Taiwan, ROC. Mao-Feng Huang
Abstract:

The point-distinguishing chromatic index of a graph \(G = (V, E)\) is the smallest number of colors assigned to \(E\) so that no two different points are incident with the same color set. In this paper, we discuss the bounds of the point-distinguishing chromatic indices of graphs resulting from the graph operations. We emphasize that almost all of these bounds are best possible.

Mark Ramras1
1Department of Mathematics, Northeastern University, Boston, MA 02115
Abstract:

If \(G\) is a bipartite graph with bipartition \((X,Y)\), a subset \(S\) of \(X\) is called a one-sided dominating set if every vertex \(y \in Y\) is adjacent to some \(x \in S\). If \(S\) is minimal as a one-sided dominating set (i.e., if it has no proper subset which is also a one-sided dominating set), it is called a bipartite dominating set (see \([4], [5]\), and \([6]\)). We study bipartite dominating sets in hypercubes.

Peter Dankelmann1, Ortrud Oellermann2
1University of Natal Durban 4041 South Africa
2University of Winnipeg 515 Portage Avenue MB R3B 2E9, Canada
Abstract:

Let \(u,v\) be distinct vertices of a multigraph \(G\) with degrees \(d_u\) and \(d_v\), respectively. The number of edge-disjoint \(u,v\)-paths in \(G\) is bounded above by \(\min\{d_u,d_v\}\). A multigraph \(G\) is optimally edge-connected if for all pairs of distinct vertices \(u\) and \(v\) this upper bound is achieved. If \(G\) is a multigraph with degree sequence \(D\), then we say \(G\) is a realisation of \(D\). We characterise degree sequences of multigraphs that have an optimally edge-connected realisation as well as those for which every realisation is optimally edge-connected.

Dale Peterson1
1Department of Mathematical Sciences United States Air Force Academy HQ USAFA/DFMS 2354 Fairchild Drive, Suite 6€D2A USAF Academy, CO 80840-6252
Abstract:

The \(associated \;graph \;of\; a\) \((0,1)\)-\(matrix\) has as its vertex set the lines of the matrix with vertices adjacent whenever their lines intersect at \(a\) \(1\). This association relates the \((0,1)\)-matrix and bipartite graph versions of the König-Egervary Theorem. We extend this graph association to higher dimensional matrices. We characterize these graphs, modulo isolated vertices, using a coloring in which every path between each pair of vertices contains the same two colors. We rely on previous results about \(p\)-dimensional gridline graphs, where vertices are \(1\)’s in a higher dimensional matrix and vertices are adjacent whenever they are on a common line. Also important is the dual property that the doubly iterated clique graph of a diamond- and simplicial vertex-free graph is isomorphic to the original.

Han Hyuk Cho1, Suh-Ryung Kim1, Yunsun Nam2
1Department of Mathematics Education Seoul National University, Seoul 151-742, Korea
2Biochip Project Team Samsung Advanced Instutite of Technology P.O. Box 111, Suwon 440-600, Korea
Abstract:

Since Cohen introduced the notion of competition graph in \(1968\), various variations have been defined and studied by many authors. Using the combinatorial properties of the adjacency matrices of digraphs, Cho \(et\; al\). \([2]\) introduced the notion of a \(m\)-step competition graph as a generalization of the notion of a competition graph. Then they \([3]\) computed the \(2\)-step competition numbers of complete graphs, cycles, and paths. However, it seems difficult to compute the \(2\)-step competition numbers even for the trees whose competition numbers can easily be computed. Cho \(et\; al\). \([1]\) gave a sufficient condition for a tree to have the \(2\)-step competition number two. In this paper, we show that this sufficient condition is also a necessary condition for a tree to have the \(2\)-step competition number two, which completely characterizes the trees whose \(2\)-step competition numbers are two. In fact, this result turns out to characterize the connected triangle-free graphs whose \(2\)-step competition numbers are two.

D.G. Kim1
1Liberal Arts and Science, Chungwoon University, South Korea
Abstract:

In this paper, we are interested in lexicographic codes which are greedily constructed codes. For an arbitrary length \(n\), we shall find the basis of quaternary lexicographic codes, for short, lexicodes, with minimum distance \(d_m = 4\). Also, using a linear nim sum of some bases (such a vector is called the testing vector), its decoding algorithm will be found.

Chariya Uiyyasathian1, Kathryn Fraughnaugh1
1Department of Mathematics University of Colorado at Denver, 80202
Abstract:

A maximal-clique partition of a graph is a family of its maximal complete sub-graphs that partitions its edge set. Many graphs do not have a maximal-clique partition, while some graphs have more than one. It is harder to find graphs in which maximal-clique partitions have different sizes. \(L(K_5)\) is a well-known example. In \(1982\), Pullman, Shank, and Wallis \([9]\) asked if there is a graph with fewer vertices than \(L(K_5)\) with this property. This paper confirms that there is no such graph.

Debra L.Boutin1
1Department of Mathematics Hamilton College, Clinton, NY 13323
Abstract:

Can an arbitrary graph be embedded in Euclidean space so that the isometry group of its vertex set is precisely its graph automorphism group? This paper gives an affirmative answer, explores the number of dimensions necessary, and classifies the outerplanar graphs that have such an embedding in the plane.

Jonathan Leech1
1Department of Mathematics Westmont College 955 La Paz Road Santa Barbara, CA 93108-1099 USA
Darrin D.Frey1, James A.Sellers2
1Department of Science and Math Cedarville University Cedarville, OH 45314
2Department of Mathematics The Pennsylvania State University University Park, PA 16802
Abstract:

In this note, we consider arithmetic properties of the function

\[K(n)=\frac{(2n)!(2n+2)!}{(n-1)!(n+1)!^2(n+2)!}\]

which counts the number of two-legged knot diagrams with one self-intersection and \(n-1\) tangencies. This function recently arose in a paper by Jacobsen and Zinn-Justin on the enumeration of knots via a transfer matrix approach. Using elementary number theoretic techniques, we prove various results concerning \(K(n)\), including the following:

  1. \(K(n)\) is never odd,
  2. \(K(n)\) is never a quadratic residue modulo \(3\), and
  3. \(K(n)\) is never a quadratic residue modulo \(5\).
Wei-Fan Wang1, Ko-Wei Lih2
1Department of Mathematics Zhejiang Normal University Jinhua 321004, P. R. China
2Institute of Mathematics Academia Sinica Nankang, Taipei 115, Taiwan
Abstract:

A Halin graph is a plane graph \(H = T \cup C\), where \(T\) is a tree with no vertex of degree two and at least one vertex of degree three or more, and \(C\) is a cycle connecting the pendant vertices of \(T\) in the cyclic order determined by the drawing of \(T\). In this paper we determine the list chromatic number, the list chromatic index, and the list total chromatic number (except when \(\Delta = 3\)) of all Halin graphs, where \(\Delta\) denotes the maximum degree of \(H\).

Kiran R.Bhutani1, Bilal Khan1
1Center for Computational Science Naval Research Laboratory, Washington D.C. 20375
Abstract:

In \([4]\) Fan Chung Graham investigates the notion of graph labelings and related bandwidth and cutwidth of such labelings when the host graph is a path graph. Motivated by problems presented in \([4]\) and our investigation of designing efficient virtual path layouts for communication networks, we investigate in this note labeling methods on graphs where the host graph is not restricted to a particular kind of graph. In \([2]\) authors introduced a metric on the set of connected simple graphs of a given order which represents load on edges of host graph under some restrictions on bandwidth of such labelings. In communication networks this translates into finding mappings between guest graph and host graph in a way that minimizes the congestion while restricting the delay. In this note, we present optimal mappings between special \(n\)-vertex graphs in \(\mathcal{G}_n\), and compute their distances with respect to the metric introduced in \([2]\). Some open questions are also presented.

J. Blasiak1, J. Rowe1, L. Traldi1, O. Yacobi1
1Department of Mathematics, Lafayette College Easton, Pennsylvania 18042
Abstract:

We discuss several equivalent definitions of matroids, motivated by the single forbidden minor of matroid basis clutters.

Anders Claesson1, Toufik Mansour2
1MATEMATIK, CHALMERS TEKNISKA HOGSKOLA OCH GOTEBORGS UNIVERSITET, S-412 96 GOTEBORG, SWEDEN
2DEPARTMENT OF MATHEMATICS, CHALMERS UNIVERSITY OF TECHNOLOGY, S-412 96 GOTEBORG, SWEDEN
Abstract:

Babson and Steingrimsson introduced generalized permutation patterns that allow the requirement that two adjacent letters in a pattern must be adjacent in the permutation. Subsequently, Claesson presented a complete solution for the number of permutations avoiding any single pattern of type \((1,2)\) or \((2,1)\). For eight of these twelve patterns the answer is given by the Bell numbers. For the remaining four the answer is given by the Catalan numbers.

In the present paper we give a complete solution for the number of permutations avoiding a pair of patterns of type \((1,2)\) or \((2,1)\). We also conjecture the number of permutations avoiding the patterns in any set of three or more such patterns.

Xue-gang Chen1, De-xiang Ma2, Liang Sun3
1Department of Mathematics, Shantou University, Shantou, Guangdong 515063, P.R. China
2The College of Information Science and Engineering, Shandong University of Science and Technology, Qingdao 266510, China
3Department of Applied Mathematics, Beijing Institute of Technology, Beijing 100081, P.R. China.
Abstract:

Let \(k \geq 1\) be an integer and let \(G\) be a graph of order \(p\). A set \(S\) of vertices in a graph is a total \(k\)-dominating set if every vertex of \(G\) is within distance at most \(k\) from some vertex of \(S\) other than itself. The smallest cardinality of such a set of vertices is called the total \(k\)-domination number of the graph and is denoted by \(\gamma_k^t(G)\). It is well known that \(\gamma_k^t(G) \leq \frac{2p}{2k+1}\) for \(p \leq 2k + 1\). In this paper, we present a characterization of connected graphs that achieve the upper bound. Furthermore, we characterize the connected graph \(G\) with \(\gamma_k^t(G) + \gamma_k^t(\overline{G}) = \frac{2p}{2k+1} + 2\).

Amitabha Tripathi1, Sujith Vijay2
1 Department of Mathematics, Indian Institute of Technology, Hauz Khas, | New Dethi – 110016, India
2Department of Mathematics, Rutgers University – New Brunswick, Piscataway, NJ 08854, U.S.A.
Abstract:

A rational number \(\frac{p}{q}\) is said to be a closest approximation to a given real number \(\alpha\) provided it is closer to \(\alpha\) than any other rational number with denominator at most \(q\). We determine the sequence of closest approximations to \(\alpha\), giving our answer in terms of the simple continued fraction expansion of \(\alpha\).

E-mail Alert

Add your e-mail address to receive upcoming issues of Ars Combinatoria.

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;