
The coloring of all the edges of a graph
Let us consider a~simple connected undirected graph
Elimination ideals are monomial ideals associated to simple graphs, not necessarily square–free, was introduced by Anwar and Khalid. These ideals are Borel type. In this paper, we obtain sharp combinatorial upper bounds of the Castelnuovo–Mumford regularity of elimination ideals corresponding to certain family of graphs.
Let
An antipodal labeling is a function
A module
Let
This paper introduces a novel type of convex function known as the refined modified
In this paper, we utilize the
Let
The orbital regular graph is a graph on which
By combining the telescoping method with Cassini–like formulae, we evaluate, in closed forms, four classes of sums about products of two arctangent functions with their argument involving Pell and Pell–Lucas polynomials. Several infinite series identities for Fibonacci and Lucas numbers are deduced as consequences.
Integer partitions of
partitions of
We consider a scalar-valued implicit function of many variables, and provide two closed formulae for all of its partial derivatives. One formula is based on products of partial derivatives of the defining function, the other one involves fewer products of building blocks of multinomial type, and we study the combinatorics of the coefficients showing up in both formulae.
Tensors, or multi-linear forms, are important objects in a variety of areas from analytics, to combinatorics, to computational complexity theory. Notions of tensor rank aim to quantify the “complexity” of these forms, and are thus also important. While there is one single definition of rank that completely captures the complexity of matrices (and thus linear transformations), there is no definitive analog for tensors. Rather, many notions of tensor rank have been defined over the years, each with their own set of uses.
In this paper we survey the popular notions of tensor rank. We give a brief history of their introduction, motivating their existence, and discuss some of their applications in computer science. We also give proof sketches of recent results by Lovett, and Cohen and Moshkovitz, which prove asymptotic equivalence between three key notions of tensor rank over finite fields with at least three elements.
We prove two conjectures due to Sun concerning binomial-harmonic sums. First, we introduce a proof of a formula for Catalan’s constant that had been conjectured by Sun in 2014. Then, using a similar approach as in our first proof, we solve an open problem due to Sun involving the sequence of alternating odd harmonic numbers. Our methods, more broadly, allow us to reduce difficult binomial-harmonic sums to finite combinations of dilogarithms that are evaluable using previously known algorithms.
The aim of this work is to establish congruences
In analogy with the semi-Fibonacci partitions studied recently by Andrews, we define semi-
The aim of this paper is to introduce and study a new class of analytic functions which generalize the classes of
criteria to verify log-convexity of sequences is presented. Iterating this criteria produces infinitely log-convex sequences. As an application, several classical examples of sequences arising in Combinatorics and Special Functions are presented. The paper concludes with a conjecture regarding coefficients of chromatic polynomials.
We discuss the VC-dimension of a class of multiples of integers and primes (equivalently indicator functions) and demonstrate connections to prime counting functions. Additionally, we prove limit theorems for the behavior of an empirical risk minimization rule as well as the weights assigned to the output hypothesis in AdaBoost for these “prime-identifying” indicator functions, when we sample
Integer compositions and related counting problems are a rich and ubiquitous topic in enumerative combinatorics. In this paper we explore the definition of symmetric and asymmetric peaks and valleys over compositions. In particular, we compute an explicit formula for the generating function for the number of integer compositions according to the number of parts, symmetric, and asymmetric peaks and valleys.
In this paper we show some identities come from the
where
where
Between Bernoulli/Euler polynomials and Pell/Lucas polynomials, convolution sums are evaluated in closed form via the generating function method. Several interesting identities involving Fibonacci and Lucas numbers are shown as consequences including those due to Byrd
The notion of length spectrum for natural numbers was introduced by Pong in
This paper uses exponential sum methods to show that if
In this paper, we introduce a generalized family of numbers and polynomials of one or more variables attached to the formal composition
In this paper, we show that the generalized exponential polynomials and the generalized Fubini polynomials satisfy certain binomial identities and that these identities characterize the mentioned polynomials (up to an affine transformation of the variable) among the class of the normalized Sheffer sequences.
Let
In this paper, we will recover the generating functions of Tribonacci numbers and Chebychev polynomials of first and second kind. By making use of the operator defined in this paper, we give some new generating functions for the binary products of Tribonacci with some remarkable numbers and polynomials. The technique used here is based on the theory of the so-called symmetric functions.
It is shown that if
Extensions of a set partition obtained by imposing bounds on the size of the parts and the coloring of some of the elements are examined. Combinatorial properties and the generating functions of some counting sequences associated with these partitions are established. Connections with Riordan arrays are presented.
Every set of natural numbers determines a generating function convergent for
We prove some combinatorial identities by an analytic method. We use the property that singular integrals of particular functions include binomial coefficients. In this paper, we prove combinatorial identities from the fact that two results of the particular function calculated as two ways using the residue theorem in the complex function theory are the same. These combinatorial identities are the generalization of a combinatorial identity that has been already obtained
Bargraphs are column convex polyominoes, where the lower edge lies on a horizontal axis. We consider the inner site-perimeter, which is the total number of cells inside the bargraph that have at least one edge in common with an outside cell and obtain the generating function that counts this statistic. From this we find the average inner perimeter and the asymptotic expression for this average as the semi-perimeter tends to infinity. We finally consider those bargraphs where the inner site-perimeter is exactly equal to the area of the bargraph.
Let
The
The main purposes of this paper are to introduce the
In this Paper, we establish a new application of the Mittag-Lefier Function method that will enlarge the application to the non linear Riccati Differential equations with fractional order. This method provides results that converge promptly to the exact solution. The description of fractional derivatives is made in the Caputo sense. To emphasize the consistency of the approach, few illustrations are presented to support the outcomes. The outcomes declare that the procedure is very constructive and relavent for determining non linear Ricati differential equations of fractional order.
One of the important features of an interconnection network is its ability to efficiently simulate programs or parallel algorithms written for other architectures. Such a simulation problem can be mathematically formulated as a graph embedding problem. In this paper, we embed complete multipartite graphs into certain trees, such as
In this paper we compute the
In this paper, we introduced a new concept called nonsplit monophonic set and its relative parameter nonsplit monophonic number
In graph theory and network analysis, centrality measures identify the most important vertices within a graph. In a connected graph, closeness centrality of a node is a measure of centrality, calculated as the reciprocal of the sum of the lengths of the shortest paths between the node and all other nodes in the graph. In this paper, we compute closeness centrality for a class of neural networks and the sibling trees, classified as a family of interconnection networks.
Let
Let
Transportation Problem (TP) is the exceptional case to obtain the minimum cost. A new hypothesis is discussed for getting minimal cost in transportation problem in this paper and also Vogel’s Approximation Method (VAM) and MODI method are analyzed with the proposed method. This approach is examined with various numerical illustrations.
This paper mainly surveys the literature on bulk queueing models and its applications. Distributed Different systems in the zone of queuing speculation merging mass queuing architecture. These mass queueing models are often related to confirm the clog issues. Through this diagram, associate degree challenge has been created to envision the paintings accomplished on mass strains, showing various wonders and also the goal is to present enough facts to inspectors, directors and enterprise those that are dependent on the usage of queueing hypothesis to counsel blockage troubles and need to find the needs of enthusiasm of applicable models near the appliance.
Frank Harary and Allen J. Schwenk have given a formula for counting the number of non-isomorphic caterpillars on
J. Schwenk, in this paper, we give a formula for counting the number of non-isomorphic caterpillars with the same degree sequence.
The line graph
A set S of vertices in a graph G is called a dominating set of G if every vertex in V(G)\S is adjacent to some vertex in S. A set S is said to be a power dominating set of G if every vertex in the system is monitored by the set S following a set of rules for power system monitoring. The power domination number of G is the minimum cardinality of a power dominating set of G. In this paper, we solve the power domination number for certain nanotori such as H-Naphtelanic,
Let
Split domination number of a graph is the cardinality of a minimum dominating set whose removal disconnects the graph. In this paper, we define a special family of Halin graphs and determine the split domination number of those graphs. We show that the construction yield non-isomorphic families of Halin graphs but with same split domination numbers.
A graph
1970-2025 CP (Manitoba, Canada) unless otherwise stated.