Carlos Guia1, Oscar Ordaz1
1Departamento de Matematicas, Facultad de Ciencias Universidad Central de Venezuela Ap. 47567, Caracas 1041-A, Venezuela.
Abstract:

Our purpose is to determine the minimum integer \(f_i(m)\) (\(g_i(m)\), \(h_i(m)\) respectively) for every natural \(m\), such that every digraph \(D\), \(f_i(m)\)-connected, (\(g_i(m)\), \(h_i(m)\)-connected respectively) and \(\alpha^i(D) \leq m\) is hamiltonian (D has a hamilton path, D is hamilton connected respectively), (\(i = 0,1, 2\)). We give exact values of \(f_i(m)\) and \(g_i(m)\) for some particular values of \(m\). We show the existence of \(h_2(m)\) and that \(h_2(1) = 1\), \(h_2(2) = 4\) hold.

Michael A.Henning1
1 Department of Mathematics University of Natal P.O. Box 375 Pietermaritzburg, South Africa
Abstract:

A two-valued function \(f\) defined on the vertices of a graph \(G = (V,E)\), \(f: V \to \{-1,1\}\), is a signed dominating function if the sum of its function values over any closed neighborhoods is at least one. That is, for every \(v \in V\), \(f(N[v]) \geq 1\), where \(N[v]\) consists of \(v\) and every vertex adjacent to \(v\). The function \(f\) is a majority dominating function if for at least half the vertices \(v \in V\), \(f(N[v]) \geq 1\). The weight of a signed (majority) dominating function is \(f(V) = \sum f(v)\). The signed (majority) domination number of a graph \(G\), denoted \(\gamma_s(G)\) (\(\gamma_{\text{maj}}(G)\), respectively), equals the minimum weight of a signed (majority, respectively) dominating function of \(G\). In this paper, we establish an upper bound on \(\gamma_s(G)\) and a lower bound on \(\gamma_{\text{maj}}(G)\) for regular graphs \(G\).

Martin Knor1
1Department of Mathematics, Faculty of Civil Engineering Slovak Technical University, Radlinského 11 813 68 Bratislava, Slovakia
Abstract:

A pseudosurface is obtained from a collection of closed surfaces by identifying some points. It is shown that a pseudosurface \(S\) is minor-closed if and only if \(S\) consists of a pseudosurface \(S^\circ \), having at most one singular point, and some spheres glued to \(S^\circ\) in a tree structure.

Jinjiang Yuan1
1Department of Mathematics Zhengzhou University Zhengzhou 450052 * P.R. China
Abstract:

Let \(\operatorname{PW}(G)\) and \(\operatorname{TW}(G)\) denote the path-width and tree-width of a graph \(G\), respectively. Let \(G+H\) denote the join of two graphs \(G\) and \(H\). We show in this paper that

\(\operatorname{PW}(G + H) = \min\{|V(G)| + \operatorname{PW}(H),|V(H)| + \operatorname{PW}(G)\}\)

and

\(\operatorname{TW}(G + H) = \min\{|V(G)| + \operatorname{TW}(H), |V(H)| + \operatorname{TW}(G)\}\).

E.J. Cockayne1, C.M. Mynhardt2
1 Department of Mathematics University of Victoria P.O. Box 3045 Victoria, BC Canada V8W 3P4
2 Department of Mathematics, Applied Mathematics & Astronomy University of South Africa P.O. Box 392 Pretoria 0001 South Africa
Abstract:

For a positive integer \(k\), a \(k\)-subdominating function of \(G = (V, E)\) is a function \(f: V \to \{-1, 1\}\) such that the sum of the function values, taken over closed neighborhoods of vertices, is at least one for at least \(k\) vertices of \(G\). The sum of the function values taken over all vertices is called the aggregate of \(f\) and the minimum aggregate amongst all \(k\)-subdominating functions of \(G\) is the \(k\)-subdomination number \(\gamma_{ks}(G)\). In the special cases where \(k = |V|\) and \(k = \lceil|V|/2\rceil\), \(\gamma_{ks}\) is respectively the signed domination number [{4}] and the majority domination number [{2}]. In this paper we characterize minimal \(k\)-subdominating functions. By determining \(\gamma_{ks}\) for paths, we give a sharp lower bound for \(\gamma_{ks}\) for trees. We also determine an upper bound for \(\gamma_{ks}\) for trees which is sharp for \(k \leq |V|/2 \).

Qing-Xue Huang1
1Department of Mathematics Zhejiang University Hangzhou, CHINA
H.J. Broersma1, Li Xueliang2,3
1 Department of Applied Mathematics University of Twente 7500 AE Enschede The Netherlands
2 Department of Applied Mathematics University of Twente 7500 AE Enschede The Netherlands
3 Department of Mathematics, Xinjiang University, Urumchi, Xin- Jiang, P.R. China
Abstract:

Let \(G\) be a connected (multi)graph. We define the leaf-exchange spanning tree graph \( {T_l}\) of \(G\) as the graph with vertex set \(V_l = \{T|T \text{ is a spanning tree of } G\}\) and edge set \(E_l = \{(T, T’)|E(T)\Delta E(T’) = \{e, f\}, e \in E(T), f \in E(T’) \text{ and } e \text{ and } f \text{ are incident with a vertex } v \text{ of degree } 1 \text{ in } T \text{ and } T’\}\). \({T}(G)\) is a spanning subgraph of the so-called spanning tree graph of \(G\), and of the adjacency spanning tree graph of \(G\), which were studied by several authors. A variation on the leaf-exchange spanning tree graph appeared in recent work on basis graphs of branching greedoids. We characterize the graphs which have a connected leaf-exchange spanning tree graph and give a lower bound on the connectivity of \( {T_l}(G)\) for a \(3\)-connected graph \(G\).

A. Khodkar1
1Centre for Combinatorics Department of Mathematics The University of Queensland Queensland 4072, Australia
Abstract:

The fine structure of a directed triple system of index \(\lambda\) is the vector \((c_1,c_2,\ldots,c_\lambda)\), where \(c_i\) is the number of directed triples appearing precisely \(i\) times in the system. We determine necessary and sufficient conditions for a vector to be the fine structure of a directed triple system of index \(3\) for \(v \equiv 0\) or \(1 \pmod{3}\).

Antoni Marczyk1
1 Instytut Matematyki AGH Krakéw, Al. Mickiewicza 30 Poland
Abstract:

Let \(p\) denote the circumference of a two-connected graph \(G\). We construct a hamiltonian cycle in \(G^2\) which contains more than \(p/2\) edges of \(G\). Using this construction we prove some properties of hamiltonian cycles in the square of \(G\).

L’. Niepel1, M. Knor2, L’. Soltés3
1Department of Applied Mathemetics Faculty of Mathematics and Physics Comenius University 842 15, Bratislava Slovakia
2Department of Mathematics Faculty of Civil Engineering Slovak Technical Univeristy Radlinského 11 813 68, Bratislava Slovakia
3 Department of Mathematics Faculty of Chemical Technology Slovak Technical University Radlinského 9 812 37, Bratislava Slovakia
Abstract:

For a connected graph \(G\) that is not a cycle, a path or a claw, let its \(k\)-iterated line graph have the diameter \(diam_k\), and the radius \(r_k\). Then \(diam_{k+1} = diam_k + 1\) for sufficiently large \(k\). Moreover, \(\{r_k\}\) also tends to infinity and the sequence \(\{diam_k – r_k – \sqrt{2\log_2 k}\}\) is bounded.

O.V. Borodin1
1 Institute of Mathematics Novosibirsk, 630090 Russia
Abstract:

In \([1]\) it is proved that each \(4\)-critical plane graph contains either a \(4\)- or a \(5\)-cycle or otherwise a face of size between \(6\) and \(11\).

O. Favaron1, C.M. Mynhardt2
1Laboratoire de Recherche en Informatique Université de Paris-Sud Bat 490-91405 Orsay Cedex France
2Department of Mathematics, Applied Mathematics & Astronomy University of South Africa 0001 Pretoria South Africa
Abstract:

For nonempty graphs \(G\) and \(H\), \(H\) is said to be \(G\)-decomposable (written \(G|H\)) if \(E(H)\) can be partitioned into sets \(E_1, \ldots, E_n\) such that the subgraph induced by each \(E_i\) is isomorphic to \(G\). If \(H\) is a graph of minimum size such that \(F|H\) and \(G|H\), then \(H\) is called a least common multiple of \(F\) and \(G\). The size of such a least common multiple is denoted by \(\mathrm{lcm}(F,G)\). We show that if \(F\) and \(G\) are bipartite, then \(\mathrm{lcm}(F,G) \leq |V(F)|\cdot|V(G)|\), where equality holds if \((|V(F)|,|V(G)|) = 1\). We also determine \(\mathrm{lcm}(F,G)\) exactly if \(F\) and \(G\) are cycles or if \(F = P_m, G = K_n\), where \(n\) is odd and \((m-1,\frac{1}{2}(n-1)) = 1\), in the latter case extending a result in [{8}].

Margaret B.Cozzens1, Shu-Shih Y.Wu1
1 Department of Mathematics Northeastern University Boston, MA 02115, USA
Abstract:

Let \(G\) be a graph. A vertex subversion strategy of \(G\), \(S\), is a set of vertices in \(G\) whose closed neighborhood is deleted from \(G\). The survival-subgraph is denoted by \(G/S\). The vertex-neighbor-integrity of \(G\), \(\mathrm{VNI}(G)\), is defined to be \(\mathrm{VNI}(G) = \displaystyle\min_{S\subseteq V(G)} \{|S| + w(G/S)\}\), where \(S\) is any vertex subversion strategy of \(G\), and \(w(G/S)\) is the maximum order of the components of \(G/S\). In this paper, we show the minimum and the maximum vertex-neighbor-integrity among all trees with any fixed order, and also show that for any integer \(l\) between the extreme values there is a tree with the vertex-neighbor-integrity \(l\).

Huaitang Chen1, Kejie Ma2, Huishan Zhou3
1Mathematics Department. Linyi Teachers’ College Linyi, Shandong P.R. of China
2Institute of Operations Reseasrch Qufu Normal University Qufu, Shandong P.R. of China
3 Department of Mathematics and Computer Sciences Georgia State University University Plaza Atlanta, Georgia, 30303
Abstract:

Let \(G\) be a graph of size \(\binom{n+1}{2}\) for some integer \(n \geq 2\). Then \(G\) is said to have an ascending star subgraph decomposition if \(G\) can be decomposed into \(n\) subgraphs \(G_1, G_2, \ldots, G_n\) such that each \(G_i\) is a star of size \(i\) with \(1 \leq i \leq n\). We shall prove in this paper that a star forest with size \(\binom{n+1}{2}\) possesses an ascending star subgraph decomposition under some conditions on the number of components or the size of components.

Johann Hagauer1, Sandi Klavéar2
1Technical University Graz IGI, Klosterwiesgasse 32 /II 8010 Graz, Austria
2 University of Maribor PF, Korogka cesta 160 62000 Maribor, Slovenia
Abstract:

Let \(G\) and \(H\) be connected graphs and let \(G \square H\) be the Cartesian product of \(G\) by \(H\). A lower and an upper bound for the independence number of the Cartesian product of graphs is proved for the case, where one of the factors is bipartite. Cartesian products with one factor being an odd path or an odd cycle are considered as well.

It is proved in particular that if \(S_1 + S_2\) is a largest 2-independent set of a graph \(G\), such that \(|S_2|\) is as small as possible and if \(|S_2| \leq n+2\), then \(\alpha(G \square P_{2n+1}) = (n+1)|S_1| + n|S_2|\). A similar result is shown for the Cartesian product with an odd cycle. It is finally proved that \(\alpha(C_{2k+1} \square C_{2n+1}) = k(2n+1)\), extending a result of Jha and Slutzki.

John T.Thorpe1,2, Frederick C.Harris,Jr.1
1Department of Computer Science Clemson University Clemson, South Carolina 29634-1906
2AT&T Global Information Solutions, GIS WP&S, CDT, Liberty, SC 29657,
Abstract:

Parallel processing has been a valuable tool for improving the performance of many algorithms. Solving intractable problems is an attractive application of parallel processing. Traditionally, exhaustive search techniques have been used to find solutions to \(NP\)-complete problems. However, the performance benefit of parallelization of exhaustive search algorithms can only provide linear speedup, which is typically of little use as problem complexity increases exponentially with problem size. Genetic algorithms can be useful tools to provide satisfactory results to such problems. This paper presents a genetic algorithm that uses parallel processing in a cooperative fashion to determine mappings for the rectilinear crossing problem. Results from this genetic algorithm are presented which contradict a conjecture that has been open for over 20 years regarding the minimal crossing number for rectilinear graphs.

E.R. Lamken1
1Department of Mathematics Princeton University Princeton, NJ 08544-1000
Abstract:

A balanced tournament design, \(\mathrm{BTD}(n)\), defined on a \(2n\)-set \(V\), is an arrangement of the \(\binom{2n}{2}\) distinct unordered pairs of the elements of \(V\) into an \(n \times 2n-1\) array such that:
(1) every element of \(V\) is contained in precisely one cell of each column, and
(2) every element of \(V\) is contained in at most two cells of each row.

If we can partition the columns of a \(\mathrm{BTD}(n)\) defined on \(V\) into three sets \(C_1, C_2, C_3\) of sizes \(1, n-1, n-1\) respectively such that the columns in \(C_1 \cup C_2\) form a Howell design of side \(m\) and order \(2n\), an \(\mathrm{H}(n,2n)\), and the columns in \(C_1 \cup C_3\) form an \(\mathrm{H}(n,2n)\), then the \(\mathrm{BTD}(n)\) is called partitionable. We denote a partitioned balanced tournament design of side \(n\) by \(\mathrm{PBTD}(n)\). The existence of these designs has been determined except for seven possible exceptions. In this note, we describe constructions for four of these designs. This completes the spectrum of \(\mathrm{PBTD}(n)\) for \(n\) even.

Kathrin Klamroth 1, Ingrid Mengersen1
1 Technische Universitat Braunschweig Germany
Abstract:

In this note we complete the table of Ramsey numbers for \(K_s\) versus the family of all \((p,q)\)-graphs for \(p \leq 8\).
Moreover, some results are obtained for the general case.

Zeng Min Song1, Ke Min Zhang 2
1 Department of Mathematics, Southeast University Nanjing, 210018, P. R. China
2Department of Mathematics, Nanjing University Nanjing, 210008, P. R. China
Abstract:

Let \(G\) be a \(2\)-connected graph of order \(n\) with connectivity \(\kappa\) and independence number \(\alpha\). In this paper, we show that if for each independent set \(S\) with \(|S| = k+1\), there are \(u,v \in S\) such that satisfying one of the following conditions:

  1. \(d(u) + d(v) \geq n\); or \(|N(u) \cap N(v)| \geq \alpha\); or \(|N(u) \cup N(v)| \geq n-k\);
  2. for any \(x \in \{u,v\}\), \(y \in V(G)\) and \(d(x,y) = 2\), it implies that \(\max\{d(x), d(y)\} \geq n/2\),

then \(G\) is hamiltonian. This result reveals the internal relations among several well-known sufficient conditions: \((1)\) it shows that it does not need to consider all pairs of nonadjacent or distance two vertices in \(G\); \((2)\) it makes known that for different pairs of vertices in \(G\), it permits to satisfy different conditions.

S. Arumugam1, A. Thuraiswamy2
1Department of Mathematics Manonmaniam Sundaranar University Tirunelveli – 627 009 INDIA
2 Department of Mathematics Ayya Nadar Janaki Ammal College (Autonomous) Sivakasi – 626 123 INDIA.
Abstract:

Let \(G\) be a graph of order \(p\) such that both \(G\) and \(\overline{G}\) have no isolated vertices. Let \(\Upsilon_t\) and \(\overline{\Upsilon}_t\) denote respectively the total domination number of \(G\) and \(\overline{G}\). In this paper we obtain a characterization of all graphs \(G\) for which \\(i) \(\Upsilon_t +\overline{\Upsilon}_t= p+1\) and (ii) \(\Upsilon_t + \overline{\Upsilon}_t = p\).

Ulrich Teschner1
1Lehrstuhl II fir Mathematik RWTH Aachen
Abstract:

The bondage number \(b(G)\) of a nonempty graph \(G\) was first introduced by Fink, Jacobson, Kinch, and Roberts [3]. In their paper they conjectured that \(b(G) \leq \Delta(G)+1\) for a nonempty graph \(G\). A counterexample for this conjecture was shown in [5]. Beyond it, we show now that there doesn’t exist an upper bound of the following form: \(b(G) \leq \Delta(G)+c\) for any \(c\in\mathbb{N}\).

Chen Kejun1, Zhu Lie1
1 Department of Mathematics Suzhou University Suzhou, 215006, P. R. China
Abstract:

It is shown that if \(t > 1\) and \(u \geq 5\), then the known necessary condition for the existence of a skew Room frame of type \(t^u\), is also sufficient with the possible exception of \((u, f)\) where \(u = 5\) and \(t \in \{11, 13, 17, 19, 23, 29, 31, 41, 43\}\).

T. Gangopadhyay1
1XLRI Jamshedpur Post Box 222 Jamshedpur 831 001 India
Abstract:

The class of \(t-sc\) graphs constitutes a new generalization of self-complementary graphs. Many \(t-sc\) graphs exhibit a stable complementing permutation. In this paper, we prove a sufficient condition for the existence of a stable complementing permutation in a \(t-sc\) graph. We also construct several infinite classes of \(t-sc\) graphs to show the stringency of our sufficient condition.

Lin Ke-rong1, Chen Rong-si 2
1Department of Mathematics Fuzhou University Fujian, 350002 P. R. China
2College of Finance and Economics Fuzhou University Fujian, 350002 P. R. China
Abstract:

A polyhex graph is either a hexagonal system or a coronoid system. A polyhex graph \(G\) is said to be \(k\)-coverable if for any \(k\) mutually disjoint hexagons the subgraph obtained from \(G\) by deleting all these \(k\) hexagons together with their incident edges has at least one perfect matching. In this paper, a constructive criterion is given to determine whether or not a given polyhex graph is \(k\)-coverable. Furthermore, a simple method is developed which allows us to determine whether or not there exists a \(k\)-coverable polyhex graph with exactly \(h\) hexagons.

Sanpei Kageyama1, Ying Miao1
1Department of Mathematics Hiroshima University Higashi-Hiroshima 739 Japan
Abstract:

A \((k, \lambda)\)-semiframe of type \(g^u\) is a group divisible design of type \(g^u\) \((\chi, \mathcal{G}, \mathcal{B})\), in which \(\mathcal{B}\) is written as a disjoint union \(\mathcal{B} = \mathcal{P} \cup \mathcal{Q} \) where \(\mathcal{P} \) is partitioned into partial parallel classes of \(\chi\) (with respect to some \(G \in \mathcal{G}\)) and \(\mathcal{Q} \) is partitioned into parallel classes of \(\chi\). In this paper, new constructions for these designs are provided with some series of designs with \(k = 3\). Cyclic semiframes are discussed. Finally, an application of semiframes is also mentioned.

Katherine Heinrich1, Midori Kobayashi2, Gisaku Nakamura 2
1Department of Mathematics and Statistics Simon Fraser University Burnaby, BC, V5A 186 Canada
2School of Administration and Informatics University of Shizuoka Shizuoka, 422 Japan
Abstract:

A solution of Dudeney’s round table problem is given when \(n\) is as follows:

  1. \(n = pq + 1\), where \(p\) and \(q\) are odd primes.
  2. \(n = p^e + 1\), where \(p\) is an odd prime.
  3. \(n = p^e q^f + 1\), where \(p\) and \(q\) are distinct odd primes satisfying \(p \geq 5\) and \(q \geq 11\), and \(e\) and \(f\) are natural numbers.

E-mail Alert

Add your e-mail address to receive upcoming issues of Ars Combinatoria.

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;