Andrea Vietri1
1Dipartimento Me.Mo.Mat., via A. Scarpa 16, 00161 Rome, Italy.
Abstract:

The proof of gracefulness for the Generalised Petersen Graph \(P_{8t,3}\) for every \(t \geq 1\), written by the same author (Graceful labellings for an infinite class of generalised Petersen graphs, Ars Combinatoria \(81 (2006)\), pp. \(247-255)\), requires the change of just one label, for the only case \(t = 5\).

Arnold Knopfmacher1, Helmut Prodinger2
1THE JOHN KNOPFMACHER CENTRE FOR APPLICABLE ANAL- YSIS AND NUMBER THEORY, UNIVERSITY OF THE WITWATERSRAND, P. O. Wits, 2050 JOHANNESBURG, SOUTH AFRICA
2THE JOHN KNOPFMACHER CENTRE FOR APPLICABLE ANALYSIS AND NUMBER THEORY, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF THE WITWATER- SRAND, P. O. WiTs, 2050 JOHANNESBURG, SOUTH AFRICA
Abstract:

For words of length \(n\), generated by independent geometric random variables, we study the average initial and end heights of the last descent in the word. In addition, we compute the average initial and end height of the last descent in a random permutation of \(n\) letters.

Yeow Meng Chee1,2
1Interactive Digital Media Program Office Media Development Authority 140 Hill Street Singapore 179369
2Division of Mathematical Sciences School of Physical and Mathematical Sciences Nanyang Technological University Singapore 637616
Abstract:

We construct a record-breaking binary code of length \(17\), minimal distance \(6\), constant weight \(6\), and containing \(113\) codewords.

Zhizheng Zhang 1, Xiaoli Ye1
1Department of Mathematics, Luoyang Teachers’ College, Luoyang 471022, P. R. China
Abstract:

The purpose of this note is to give the power formula of the generalized Lah matrix and show \(\mathcal{L}[x,y] = \mathcal{FQ}[x,y]\), where \(\mathcal{F}\) is the Fibonacci matrix and \(\mathcal{Q}[x,y]\) is the lower triangular matrix. From it, several combinatorial identities involving the Fibonacci numbers are obtained.

S. Ramachandran1, S. Monikandan1
1Department of Mathematics, Vivekananda College, Agasieeswaram-629 701, Kanyakumari, T.N. State, INDIA.
Abstract:

A graph is called set reconstructible if it is determined uniquely (up to isomorphism) by the set of its vertex-deleted subgraphs. We prove that some classes of separable graphs with a unique endvertex are set reconstructible and show that all graphs are set reconstructible if all \(2\)-connected graphs are set reconstructible.

Arie Bialostocki1, David J.Grynkiewicz2
1300 Brink Hall, University of Idaho, P.O. Box 441103, Moscow, ID 83844-1103,
2Mathematics 253-37, Caltech, Pasadena, CA 91125
Abstract:

We prove the following extension of the Erdős-Ginzburg-Ziv Theorem. Let \(m\) be a positive integer. For every sequence \(\{a_i\}_{i\in I}\) of elements from the cyclic group \(\mathbb{Z}_m\), where \(|I| = 4m – 5\) (where \(|I| = 4m – 3\)), there exist two subsets \(A, B \subseteq I\) such that \(|A \cap B| = 2\) (such that \(|A \cap B| = 1\)), \(|A| = |B| = m\), and \(\sum\limits_{i\in b} a_i = \sum\limits_{i\in b} b_i = 0\).

Jun-Ming Xu1, Min Lu1, Ying-Mei Fan2
1Department of Mathematics University of Science and Technology of China Hefei, Anhui, 230026, China
2College of Mathematics and Information Science Guangxi University, Nanning, Guangxi, 530004, China
Abstract:

A connected graph is said to be super edge-connected if every minimum edge-cut isolates a vertex. The restricted edge-connectivity \(\lambda’\) of a connected graph is the minimum number of edges whose deletion results in a disconnected graph such that each component has at least two vertices. It has been shown by A. H. Esfahanian and S. L. Hakimi (On computing a conditional edge-connectivity of a graph. Information Processing Letters, 27(1988), 195-199] that \(\lambda'(G) \leq \xi(G)\) for any graph of order at least four that is not a star, where \(\xi(G) = \min\{d_G(u) + d_G(v) – 2: uv \text{ is an edge in } G\}\). A graph \(G\) is called \(\lambda’\)-optimal if \(\lambda'(G) = \xi(G)\). This paper proves that the de Bruijn undirected graph \(UB(d,n)\) is \(\lambda’\)-optimal except \(UB(2,1)\), \(UB(3,1)\), and \(UB(2,3)\), and hence, is super edge-connected for \(n\geq 1\) and \(d\geq 2\).

Alka V.Kanetkar1, S.S. Sane2
1Department of Mathematics Mithibai College Vile Parle (W), Mumbai – 400056
2Department of Mathematics University of Mumbai Vidyanagari, Santacruz (East)
Abstract:

The problem of graceful labeling of a particular class of trees called quasistars is considered. Such a quasistar is a tree \(Q\) with \(k\) distinct paths with lengths \(1, d+1, 2d+1, \ldots, (k-1)d+1\) joined at a unique vertex \(\theta\).

Thus, \(Q\) has \(1 + [1 + (d+1) + (2d+1) + \ldots + (k-1)d+1)] = 1+k +\frac{k(k-1)d}{2}\) vertices. The \(k\) paths of \(Q\) have lengths in arithmetic progression with common difference \(d\). It is shown that \(Q\) has a graceful labeling for all \(k \leq 6\) and all values of \(d\).

P. Dankelmann1, L. Volkmann2
1School of Mathematical and Statistical Sciences University of KwaZulu-Natal, Durban, South Africa
2Lehrstuhl II fiir Mathematik RWTH-Aachen, Germany
Abstract:

The average distance \(\mu(D)\) of a strong digraph \(D\) is the average of the distances between all ordered pairs of distinct vertices of \(D\). Plesnik \([3]\) proved that if \(D\) is a strong tournament of order \(n\), then \(\mu(D) \leq \frac{n+4}{6} + \frac{1}{n}\). In this paper we show that, asymptotically, the same inequality holds for strong bipartite tournaments. We also give an improved upper bound on the average distance of a \(k\)-connected bipartite tournament.

Jun-Ming Xu1, Tao Zhou1, Ye Du2, Jun Yan2
1Department of Mathematics University of Science and Technology of China Hefei, Anhui, 230026, China
2Department of Computer Science and Technology University of Science and Technology of China Hefei, Anhui, 230026, China
Abstract:

To measure the efficiency of a routing in network, Chung et al. [The forwarding index of communication networks. IEEE Trans. Inform. Theory, 33 (2) (1987), 224-232] proposed the notion of forwarding index and established an upper bound \((n – 1)(n – 2)\) of this parameter for a connected graph of order \(n\). This note improves this bound as \((n – 1)(n – 2) – (2n – 2 – \Delta\lfloor1+\frac{n-1}{\Delta}\rfloor)\) \(\lfloor \frac{n-1}{\Delta}\rfloor\) , where \(\Delta\) is the maximum degree of the graph \(G\). This bound is best possible in the sense that there is a graph \(G\) attaining it.

Shu-Guang Guo1
1Department of Mathematics, Yancheng Teachers College, Yancheng 224002, Jiangsu, P. R. China
Abstract:

We study the spectral radius of unicyclic graphs with \(n\) vertices and edge independence number \(q\). In this paper, we show that of all unicyclic graphs with \(n\) vertices and edge independence number \(q\), the maximal spectral radius is obtained uniquely at \(\Delta_n(q)\), where \(\Delta_n(q)\) is a graph on \(n\) vertices obtained from the cycle \(C_3\) by attaching \(n – 2q + 1\) pendant edges and \(q – 2\) paths of length \(2\) at one vertex.

Anuradha Sharma1, Gurmeet K.Bakshi1, Madhu Raka1
1Centre for Advanced Study in Mathematics Panjab University Chandigarh – 160014 INDIA
Abstract:

Let \(q\) be an odd prime power and \(p\) be an odd prime with \(gcd(p, g) = 1\). Let the order of \(g\) modulo \(p\) be \(f\) and \(gcd(\frac{p-1}{f}, q) = 1\). Here explicit expressions for all the primitive idempotents in the ring \(R_{2p^n} = GF(q)[x]/(x^{2p^n} – 1)\), for any positive integer \(n\), are obtained in terms of cyclotomic numbers, provided \(p\) does not divide \(\frac{q^f-1}{2p}\), if \(n \geq 2\). Some lower bounds on the minimum distances of irreducible cyclic codes of length \(2p^n\) over \(GF(q)\) are also obtained.

Shailesh K.Tipnis1, Michael J.Plantholt1
1Department of Mathematics Illinois State University Normal, IL 61790-4520 USA
Abstract:

Let \(G\) be a connected multigraph with an even number of edges and suppose that the degree of each vertex of \(G\) is even. Let \((uv, G)\) denote the multiplicity of edge \((u,v)\) in \(G\). It is well known that we can obtain a halving of \(G\) into two halves \(G_1\) and \(G_2\), i.e. that \(G\) can be decomposed into multigraphs \(G_1\) and \(G_2\), where for each vertex \(v\), \(\deg(v, G_1) = \deg(v, G_2) = \frac{1}{2}\deg(v,G)\). It is also easy to see that if the edges with odd multiplicity in \(G\) induce no components with an odd number of edges, then we can obtain such a halving of \(G\) into two halves \(G_1\) and \(G_2\) that is well-spread, i.e. for each edge \((u,v)\) of \(G\), \(|\mu(uv, G_1) – \mu(uv, G_2)| \leq 1\). We show that if \(G\) is a \(\Delta\)-regular multigraph with an even number of vertices and with \(\Delta\) being even, then even if the edges with odd multiplicity in \(G\) induce components with an odd number of edges, we can still obtain a well-spread halving of \(G\) provided that we allow the addition/removal of a Hamilton cycle to/from \(G\). We give an application of this result to obtaining sports schedules such that multiple encounters between teams are well-spread throughout the season.

Jihui Wang1,2, Guizhen Liu3
1School of Mathematics and System Science, Shandong University, Jinan, Shandong 250100, P.R.China
2 School of Science, Jinan University, Jinan, Shandong 250022, P.R.China
3 School of Mathematics and System Science, Shandong University, Jinan, Shandong 250100, P.R.China
Abstract:

A fractional edge coloring of graph \(G\) is an assignment of a nonnegative weight \(w_M\) to each matching \(M\) of \(G\) such that for each edge \(e\) we have \(\sum_{M\ni e} w_M \geq 1\). The fractional edge coloring chromatic number of a graph \(G\), denoted by \(\chi’_f(G)\), is the minimum value of \(\sum_{M} w_M\) (where the minimum is over all fractional edge colorings \(w\)). It is known that for any simple graph \(G\) with maximum degree \(\Delta\), \(\Delta < \chi'_f(G) \leq \Delta+1\). And \(\chi'_f(G) = \Delta+1\) if and only if \(G\) is \(K_{2n+1}\). In this paper, we give some sufficient conditions for a graph \(G\) to have \(\chi'_f(G) = \Delta\). Furthermore, we show that the results in this paper are the best possible.

John L.Goldwasser1, William F.Klostermeyer2
1Dept. of Mathematics West Virginia University Morgantown, WV 26506
2Dept. of Computer and Information Sciences University of North Florida Jacksonville, FL 32224-2669
Abstract:

A subset \(D\) of the vertex set \(V\) of a graph is called an open odd dominating set if each vertex in \(V\) is adjacent to an odd number of vertices in \(D\) (adjacency is irreflexive). In this paper we solve the existence and enumeration problems for odd open dominating sets (and analogously defined even open dominating sets) in the \(m \times n\) grid graph and prove some structural results for those that do exist. We use a combination of combinatorial and linear algebraic methods, with particular reliance on the sequence of Fibonacci polynomials over \({GF}(2)\).

R.G. Stanton1
1Department of Computer Science University of Manitoba Winnipeg, MB, Canada R3T 2N2
Abstract:

By introducing \(4\) colour classes in projective planes with non-Fano quads, discussion of the planes of small order is simplified.

Zeev Nutov1, Masao Tsugaki2
1Department of Computer Science The Open University of Israel
2Department of Mathematical Information Science Science University of Tokyo
Abstract:

Let \(G = (V, E)\) be a \(k\)-connected graph. For \(t \geq 3\), a subset \(T \subset V\) is a \((t,k)\)-shredder if \(|T| = k\) and \(G – T\) has at least \(t\) connected components. It is known that the number of \((t,k)\)-shredders in a \(k\)-connected graph on \(n\) nodes is less than \(\frac{2n}{2t – 3}\). We show a slightly better bound for the case \(k \leq 2t – 3\).

Jason Brown1, Richard Hoshino1
1Department of Mathematics and Statistics Dalhousie University Halifax, Nova Scotia, Canada B3H 3J5
Abstract:

Let \(L\) and \(R\) be two graphs. For any positive integer \(n\), the Ehrenfeucht-Fraissé game \(G_n(L, R)\) is played as follows: on the \(i\)-th move, with \(1 \leq i \leq n\), the first player chooses a vertex on either \(L\) or \(R\), and the second player responds by choosing a vertex on the other graph. Let \(l_i\) be the vertex of \(L\) chosen on the \(i^{th}\) move, and let \(r_i\) be the vertex of \(R\) chosen on the \(i^{th}\) move. The second player wins the game iff the induced subgraphs \(L\{l_1,l_2,…,l_n\}\) and \(R\{r_1,r_2,…,r_n\}\) are isomorphic under the mapping sending \(l_i\) to \(r_i\). It is known that the second player has a winning strategy if and only if the two graphs, viewed as first-order logical structures (with a binary predicate E), are indistinguishable (in the corresponding first-order theory) by sentences of quantifier depth at most \(n\). In this paper we will give the first complete description of when the second player has a winning strategy for \(L\) and \(R\) being both paths or both cycles. The results significantly improve previous partial results.

Gaowen Xi1
1Department of Mathematics, Luoyang Teachers’ College, Luoyang, 471022, P. R. China
Abstract:

By applying the method of generating function, the purpose of this paper is to give several summations of reciprocals related to \(l-th\) power of generalized Fibonacci sequences. As applications, some identities involving Fibonacci, Lucas numbers are obtained.

Malgorzata Moczurad1, Wlodzimierz Moczurad1
1Institute of Computer Science, Jagiellonian University Nawojki 11, 30-072 Krakéw, Poland
Abstract:

Bricks are polyominoes with labelled cells. The problem whether a given set of bricks is a code is undecidable in general. We consider sets consisting of square bricks only. We have shown that in this setting, the codicity of small sets (two bricks) is decidable, but \(15\) bricks are enough to make the problem undecidable. Thus the step from words to even simple shapes changes the algorithmic properties significantly (codicity is easily decidable for words). In the present paper we are interested whether this is reflected by quantitative properties of words and bricks. We use their combinatorial properties to show that the proportion of codes among all sets is asymptotically equal to \(1\) in both cases.

Guoping Wang1, Qiongxiang Huang1
1The College of Mathematics and Systems Sciences, Xinjiang University, Urumqi, Xinjiang 830046, P.R.China
Abstract:

Let \(G_{n,m} = C_n \times P_m\), be the cartesian product of an \(n\)-cycle \(C_n\) and a path \(P_m\) of length \(m-1\). We prove that \(\chi'(G_{n,m}) = \chi'(G_{n,m}) = 4\) if \(m \geq 3\), which implies that the list-edge-coloring conjecture (LLECC) holds for all graphs \(G_{n,m}\).

Nicholas A.Loehr1
1Department of Mathematics University of Pennsylvania Philadelphia, PA 19104
Abstract:

Various authors have defined statistics on Dyck paths that lead to generalizations of the Catalan numbers. Three such statistics are area, maj, and bounce. Haglund, whe introduced the bounce statistic, gave an algebraic proof that \(n(n – 1)/2+\) area — bounce and maj have the same distribution on Dyck paths of order \(n\). We give an explicit bijective proof of the same result.

Dalibor Froncek 1, Tereza Kovarova2
1Department of Mathematics and Statistics University of Minnesota Duluth 1117 University Drive Duluth, MN 55810 – 3000, U.S.A.
2Department of Mathematics and Descriptive Geometry Technical University of Ostrava 17. listopadu 15 708 33 Ostrava, Czech Republic
Abstract:

We develop a new type of a vertex labeling of graphs, namely \(2n\)-cyclic blended labeling, which is a generalization of some previously known labelings. We prove that a graph with this labeling factorizes the complete graph on \(2nk\) vertices, where \(k\) is odd and \(n, k > 1\).

Yahui Hu1
1Department of Mathematics, Hunan First Normal College, Changsha 410205, P.R.China
Abstract:

Let \(D = (V, E)\) be a primitive digraph. The exponent of \(D\) at a vertex \(u \in V\), denoted by \(\text{exp}_D(u)\), is defined to be the least integer \(k\) such that there is a walk of length \(k\) from \(u\) to \(v\) for each \(v \in V\). Let \(V = \{v_1,v_2,\ldots ,v_n\}\). The vertices of \(V\) can be ordered so that \(\text{exp}_D(v_{i_1}) \leq \text{exp}_D(v_{i_2}) \leq \ldots \leq \text{exp}_D(v_{i_n})\). The number \(\text{exp}_D(v_{i_k})\) is called \(k\)-exponent of \(D\), denoted by \(\text{exp}_D(k)\). In this paper, we completely characterize \(1\)-exponent set of primitive, minimally strong digraphs with \(n\) vertices.

Iwona Wloch1
1Faculty of Mathematics and Applied Physics Department of Mathematics ul. W. Pola 2,35-959 Rzeszéw, Poland
Abstract:

In \([4]\) H. Galana-Sanchez introduced the concept of kernels by monochromatic paths which generalize the concept of kernels. In \([6]\) they proved the necessary and sufficient conditions for the existence of kernels by monochromatic paths of the duplication of a subset of vertices of a digraph, where a digraph is without monochromatic directed circuits. In this paper we study independent by monochromatic paths sets and kernels by monochromatic paths of the duplication. We generalize result from \([6]\) for an arbitrary edge coloured digraph.

Yahui Hu1, Pingzhi Yuan2, Weijun Liu3
1Department of Mathematics, Hunan First Normal College, Changsha 410205, P.R.China
2Department of Mathematics, Sun Yat-Sen University, Guangzhou 510275, P.R.China
3Department of Mathematics, Central South University, Changsha 410075, P.R.China
Abstract:

Let \(D = (V, E)\) be a primitive, minimally strong digraph. In \(1982\), J. A. Ross studied the exponent of \(D\) and obtained that \(\exp(D) \leq n + s(n – 8)\), where \(s\) is the length of a shortest circuit in \(D\) \([D]\). In this paper, the \(k\)-exponent of \(D\) is studied. Our principle result is that
\[
\exp_D(k) \leq \begin{cases}
k + 1 + s(n – 3), & \text{if } 1 \leq k \leq s, \\\
k + s(n-3), & \text{if } s+1 \leq k \leq n,\\
\end{cases} \\.
\]
with equality if and only if \(D\) isomorphic to the diagraph \(D_{s,n}\) with vertex set \(V(D_{s,n})=\{v_1,v_2,\ldots,v_n\}\) and arc set \(E(D_{s,n})=\{(v_i,v_{i+1}):1\leq i\leq n-1\}\cap \{(v_s,v_1),(v_n,v_2)\}\). If \((s,n-1)\neq 1\),then
\[
\exp_D(k)< \begin{cases} k + 1 + s(n – 3), & \text{if } 1 \leq k \leq s, \\\ k + s(n-3), & \text{if } s+1 \leq k \leq n, \end{cases} \\ \] and if \((s,n-1)=1\), then \(D_{s, n}\) is a primitive, minimally strong digraph on \(n\) vertices with the \(k\)-exponent \[ \exp_D(k)= \begin{cases} k + 1 + s(n – 3), & \text{if } 1 \leq k \leq s, \\\ k + s(n-3), & \text{if } s+1 \leq k \leq n, \end{cases} \\ \] Moreover, we provide a new proof of Theorem \(1\) in \([6]\) and Theorem \(2\) in \([14]\) by applying this result.

William Kocay1
1Department of Computer Science and St. Paul’s College University of Manitoba Winnipeg, Manitoba, CANADA
Abstract:

Given a finite projective plane of order \(n\). A quadrangle consists of four points \(A, B, C, D\), no three collinear. If the diagonal points are non-collinear, the quadrangle is called a non-Fano quad. A general sum of squares theorem is proved for the distribution of points in a plane containing a non-Fano quad, whenever \(n \geq 7\). The theorem implies that the number of possible distributions of points in a plane of order \(n\) is bounded for all \(n \geq 7\). This is used to give a simple combinatorial proof of the uniqueness of \(PP(7)\).

M. Liverani1, A. Morgana2, C.P.de Mello3
1Dipartimento di Matematica, Universita Rorna Tre, Italy.
2Dipartimento di Matematica, Universita di Roma “La Sapienza”, Italy.
3Instituto de Computagie, UNICAMP, Brasil.
Abstract:

Let \(G = (V, E)\) be a graph with \(n\) vertices. The clique graph of \(G\) is the intersection graph \(K(G)\) of the set of all (maximal) cliques of \(G\) and \(K\) is called the clique operator. The iterated clique graphs \(K^*(G)\) are recursively defined by \(K^0(G) = G\) and \(K^i(G) = K(K^{i-1}(G))\), \(i > 0\). A graph is \(K\)-divergent if the sequence \(|V(K^i(G))|\) of all vertex numbers of its iterated clique graphs is unbounded, otherwise it is \(K\)-convergent. The long-run behaviour of \(G\), when we repeatedly apply the clique operator, is called the \(K\)-behaviour of \(G\).

In this paper, we characterize the \(K\)-behaviour of the class of graphs called \(p\)-trees, that has been extensively studied by Babel. Among many other properties, a \(p\)-tree contains exactly \(n – 3\) induced \(4\)-cycles. In this way, we extend some previous results about the \(K\)-behaviour of cographs, i.e., graphs with no induced \(P_4\)s. This characterization leads to a polynomial-time algorithm for deciding the \(K\)-convergence or \(K\)-divergence of any graph in the class.

Yan Xu1, Yanpei Liu 1
1Department of Mathematics Beijing Jiaotong University Beijing 100044, P.R.China.
Abstract:

In this paper, we obtain a general enumerating functional equation about rooted pan-fan maps on nonorientable surfaces. Based on this equation, an explicit expression of rooted pan-fan maps on the Klein bottle is given. Meanwhile, some simple explicit expressions with up to two parameters: the valency of the root face and the size for rooted one-vertexed maps on surfaces (Klein bottle, Torus, \(N_3\)) are provided.

C. Balbuena1, P. Garcia-Vazquez2, X. Marcote3, J.C. Valenzuela4
1Departament de Matematica Aplicada III Universitat Politécnica de Catalunya, Barcelona, Spain
2Departamento de Matemdtica Aplicada I Universidad de Sevilla, Sevilla, Spain
3 Departament de Matematica Aplicada III Universitat Politécnica de Catalunya, Barcelona, Spain
4Departamento de Matemdticas Universidad de Cadiz, Cadiz, Spain
Abstract:

Let us denote by \({EX}(m,n; \{C_4,\ldots,C_{2t}\})\) the family of bipartite graphs \(G\) with \(m\) and \(n\) vertices in its classes that contain no cycles of length less than or equal to \(2t\) and have maximum size. In this paper, the following question is proposed: does always such an extremal graph \(G\) contain a \((2t + 2)\)-cycle? The answer is shown to be affirmative for \(t = 2,3\) or whenever \(m\) and \(n\) are large enough in comparison with \(t\). The latter asymptotical result needs two preliminary theorems. First, we prove that the diameter of an extremal bipartite graph is at most \(2t\), and afterwards we show that its girth is equal to \(2t + 2\) when the minimum degree is at least \(2\) and the maximum degree is at least \(t + 1\).

E-mail Alert

Add your e-mail address to receive upcoming issues of Ars Combinatoria.

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;