
For a graph
For a non-simply connected orthogonal polygon
We empirically evaluate the performance of three approximation algorithms for the online bottleneck matching problem. In this matching problem,
In this paper, we study the total domatic partition problem for bipartite graphs, split graphs, and graphs with balanced adjacency matrices. We show that the total domatic partition problem is NP-complete for bipartite graphs and split graphs, and show that the total domatic partition problem is polynomial-time solvable for graphs with balanced adjacency matrices. Furthermore, we show that the total domatic partition problem is linear-time solvable for any chordal bipartite graph
Applying the multisection series method to the MacLaurin series expansion of arcsin-function, we transform the Apéry–like series involving the central binomial coefficients into systems of linear equations. By resolving the linear systems (for example, by Mathematica), we establish numerous remarkable infinite series formulae for π and logarithm functions, including several recent results due to Almkvist et al. (2003) and Zheng (2008).
We introduce the notion of capacity (ability to contain water) for compositions. Initially the compositions are defined on a finite alphabet
As suggested by Currie, we apply the probabilistic method to problems regarding pattern avoidance. Using techniques from analytic combinatorics, we calculate asymptotic mean pattern occurrence and use them in conjunction with the probabilistic method to establish new results about the Ramsey theory of unavoidable patterns in the abelian full word case and in the nonabelian partial word case.
In this paper, we present several explicit formulas of the sums and hypersums of the powers of the first
We define a generalized class of modified zeta series transformations generating the partial sums of the Hurwitz zeta function and series expansions of the Lerch transcendent function. The new transformation coefficients we define within the article satisfy expansions by generalized harmonic number sequences as the partial sums of the Hurwitz zeta function. These transformation coefficients satisfy many properties which are analogous to known identities and expansions of the Stirling numbers of the first kind and to the known transformation coefficients employed to enumerate variants of the polylogarithm function series. Applications of the new results we prove in the article include new series expansions of the Dirichlet beta function, the Legendre chi function, BBP-type series identities for special constants, alternating and exotic Euler sum variants, alternating zeta functions with powers of quadratic denominators, and particular series defining special cases of the Riemann zeta function constants at the positive integers s ≥ 3.
Let
In this paper, we first give a new
Let
In this paper, we analyze the asymptotic number
An inverse-conjugate composition of a positive integer
S. Ekhad and D. Zeilberger recently proved that the multivariate generating function for the number of simple singular vector tuples of a generic
In this paper, we define the q-analogue of the so-called symmetric infinite matrix algorithm. We find an explicit formula for entries in the associated matrix and also for the generating function of the k-th row of this matrix for each fixed k. This helps us to derive analytic and number theoretic identities with respect to the q-harmonic numbers and q-hyperharmonic numbers of Mansour and Shattuck.
Bargraphs are lattice paths in
We survey four instances of the Fourier analytic ‘transference principle’or ‘dense model lemma’, which allows one to approximate an unbounded function on the integers by a bounded function with similar Fourier transform. Such a result forms a component of a general method pioneered by Green to count solutions to a single linear equation in a sparse subset of integers.
Let
Let
We also get similar results for other explicit constructions of
We define a new class of generating function transformations related to polylogarithm functions, Dirichlet series, and Euler sums. These transformations are given by an infinite sum over the jth derivatives of a sequence generating function and sets of generalized coefficients satisfying a non-triangular recurrence relation in two variables. The generalized transformation coefficients share a number of analogous properties with the Stirling numbers of the second kind and the known harmonic number expansions of the unsigned Stirling numbers of the first kind.
We prove a number of properties of the generalized coefficients which lead to new recurrence relations and summation identities for the k-order harmonic number sequences. Other applications of the generating function transformations we define in the article include new series expansions for the polylogarithm function, the alternating zeta function, and the Fourier series for the periodic Bernoulli polynomials. We conclude the article with a discussion of several specific new “almost” linear recurrence relations between the integer-order harmonic numbers and the generalized transformation coefficients, which provide new applications to studying the limiting behavior of the zeta function constants, ζ(k), at integers k ≥ 2.
Generating functions for Pell and Pell-Lucas numbers are obtained. Applications are given for some results recently obtained by Mansour [Mansour12]; by using an alternative approach that considers the action of the operator
For graphs
Let
A triple system is decomposable if the blocks can be partitioned into two sets, each of which is itself a triple system. It is cyclically decomposable if the resulting triple systems are themselves cyclic. In this paper, we prove that a cyclic two-fold triple system is cyclically indecomposable if and only if it is indecomposable. Moreover, we construct cyclic three-fold triple systems of order $v$ which are cyclically indecomposable but decomposable for all
Motivated by the Monthly problem #11515, we prove further interesting formulae for trigonometric series by means of telescoping method.
The main theorem establishes the generating function
where
Here
An involution is a permutation that is its own inverse. Given a permutation
The proof is based upon the observation that, for most permutations
The Stirling number of the second kind
Packing patterns in permutations concerns finding the permutation with the maximum number of a prescribed pattern. In 2002, Albert, Atkinson, Handley, Holton and Stromquist showed that there always exists a layered permutation containing the maximum number of a layered pattern among all permutations of length n. Consequently the packing density for all but two (up to equivalence) patterns up to length 4 can be obtained. In this note we consider the analogous question for colored patterns and permutations. By introducing the concept of “colored blocks” we characterize the optimal permutations with the maximum number of a given colored pattern when it contains at most three colored blocks. As examples we apply this characterization to find the optimal permutations of various colored patterns and subsequently obtain their corresponding packing densities.
We extend the main result of the paper “Arithmetic progressions in sets of fractional dimension” ([12]) in two ways. Recall that in [12], Łaba and Pramanik proved that any measure
Let
We give an arithmetic version of the recent proof of the triangle removal lemma by Fox [Fox11], for the group
This problem was first studied by Green [Gre05] who proved a lower bound on
The improved lower bound was already known to follow (for triangle-removal in all groups) using Fox’s removal lemma for directed cycles and a reduction by Král, Serra, and Vena~\cite{KSV09} (see [Fox11, CF13]). The purpose of this note is to provide a direct Fourier-analytic proof for the group
Catalan Numbers and their generalizations are found throughout the field of Combinatorics. This paper describes their connection to numbers whose digits appear in the number’s own
A Costas array of order
A set of natural numbers tiles the plane if a square-tiling of the plane exists using exactly one square of side length n for every n in the set. In [9] it is shown that N, the set of all natural numbers, tiles the plane. We answer here a number of questions from that paper. We show that there is a simple tiling of the plane (no nontrivial subset of squares forms a rectangle). We show that neither the odd numbers nor the prime numbers tile the plane. We show that N can tile many, even infinitely many planes.
Let
In the paper, utilizing respectively the induction, a generating function of the Lah numbers, the Chu-Vandermonde summation formula, an inversion formula, the Gauss hypergeometric series, and two generating functions of Stirling numbers of the first kind, the authors collect and provide six proofs for an identity of the Lah numbers.
We prove that if
where
The proof relies on a result in
where
By extending former results of Ehrhart, it was shown by Peter McMullen that the number of lattice points in the Minkowski-sum of dilated rational polytopes is a quasipolynomial function in the dilation factors. Here we take a closer look at the coefficients of these quasi-polynomials and show that they are piecewise polynomials themselves and that they are related to each other by a simple differential equation. As a corollary, we obtain a refinement of former results on lattice points in vector dilated polytopes
Using the Saddle point method and multiseries expansions, we obtain from the generating function of the Eulerian numbers
In this paper, some formulae for computing the numbers of spanning trees of the corona and the join of graphs are deduced.
We introduce the problem of isolating several nodes in random recursive trees by successively removing random edges, and study the number of random cuts that are necessary for the isolation. In particular, we analyze the number of random cuts required to isolate
Guibert and Linusson introduced the family of doubly alternating Baxter permutations, i.e., Baxter permutations
In his celebrated proof of Szemerédi’s theorem that a set of integers of positive density contains arbitrarily long arithmetic progressions, W. T. Gowers introduced a certain sequence of norms
This question has been answered fairly completely by B. Green, T. Tao and T. Ziegler in terms of certain algebraic functions called \textit{nilsequences}. In this work, we show that more explicit functions called \textit{bracket polynomials} have `large’ Gowers norm. Specifically, for a fairly large class of bracket polynomials, called \textit{constant-free bracket polynomials}, we show that if
We establish this result by first reducing it to a certain recurrence property of sets of constant-free bracket polynomials. Specifically, we show that if
The proof of this statement relies on two deep results from the literature. The first is work of V. Bergelson and A. Leibman showing that an arbitrary bracket polynomial can be expressed in terms of a so-called \textit{polynomial sequence} on a nilmanifold. The second is a theorem of B. Green and T. Tao describing the quantitative distribution properties of such polynomial sequences.
In the special cases of the bracket polynomials
The theory of generic smooth closed plane curves initiated by Vladimir Arnold is a beautiful fusion of topology, combinatorics, and analysis. The theory remains fairly undeveloped. We review existing methods to describe generic smooth closed plane curves combinatorially, introduce a new one, and give an algorithm for efficient computation of Arnold’s invariants. Our results provide a good source of future research projects that involve computer experiments with plane curves. The reader is not required to have background in topology and even undergraduate students with basic knowledge of differential geometry and graph theory will easily understand our paper.
A level (
In this paper, we consider the problem of enumerating the members of
Let
1970-2025 CP (Manitoba, Canada) unless otherwise stated.