
In [Kit1] Kitaev discussed simultaneous avoidance of two \(3\)-patterns with no internal dashes, that is, where the patterns correspond to contiguous subwords in a permutation. In three essentially different cases, the numbers of such \(n\)-permutations are \(2^{n-1}\), the number of involutions in \(S_n\), and \(2^{E_n}\), where \(E_n\) is the \(n\)-th Euler number. In this paper we give recurrence relations for the remaining three essentially different cases.
To complete the descriptions in [Kit3] and [KitMans], we consider avoidance of a pattern of the form \(x-y-z\) (a classical \(3\)-pattern) and beginning or ending with an increasing or decreasing pattern. Moreover, we generalize this problem: we demand that a permutation must avoid a \(3\)-pattern, begin with a certain pattern, and end with a certain pattern simultaneously. We find the number of such permutations in case of avoiding an arbitrary generalized \(3\)-pattern and beginning and ending with increasing or decreasing patterns.
A graph \(G\) is called integral or Laplacian integral if all the eigenvalues of the adjacency matrix \(A(G)\) or the Laplacian matrix \(Lap(G) = D(G) – A(G)\) of \(G\) are integers, where \(D(G)\) denotes the diagonal matrix of the vertex degrees of \(G\). Let \(K_{n,n+1} \equiv K_{n+1,n}\) and \(K_{1,p}[(p-1)K_p]\) denote the \((n+1)\)-regular graph with \(4n+2\) vertices and the \(p\)-regular graph with \(p^2 + 1\) vertices, respectively. In this paper, we shall give the spectra and characteristic polynomials of \(K_{n,n+1} \equiv K_{n+1,n}\) and \(K_{1,p}[(p-1)K_p]\) from the theory on matrices. We derive the characteristic polynomials for their complement graphs, their line graphs, the complement graphs of their line graphs, and the line graphs of their complement graphs. We also obtain the numbers of spanning trees for such graphs. When \(p = n^2 + n + 1\), these graphs are not only integral but also Laplacian integral. The discovery of these integral graphs is a new contribution to the search of integral graphs.
Balakrishnan et al. \([1, 2]\) have shown that every graph is a subgraph of a graceful graph and an elegant graph. Also Liu and Zhang \([4]\) have shown that every graph is a subgraph of a harmonious graph. In this paper we prove a generalization of these two results that any given set of graphs \(G_1,G_1,\ldots,G_i\) can be packed into a graceful/harmonious/elegant graph.
We consider compositions or ordered partitions of the natural number n for which the largest (resp. smallest) summand occurs in the first position of the composition.
Let \(m \geq 4\) be a positive integer and let \({Z}_m\) denote the cyclic group of residues modulo \(m\). For a system \(L\) of inequalities in \(m\) variables, let \(R(L;2)\) (\(R(L;{Z}_m)\)) denote the minimum integer \(N\) such that every function \(\Delta: \{1,2,\ldots,N\} \to \{0,1\}\) (\(A: \{1,2,\ldots,N\} \to {Z}_m\)) admits a solution of \(L\), say \((z_1,\ldots,z_m)\), such that \(\Delta(x_1) = \Delta(x_2) = \cdots = \Delta(x_m)\) (such that \(\sum_{i=1}^{m}\Delta(x_i) = 0\)). Define the system \(L_1(m)\) to consist of the inequality \(x_2 – x_1 \leq x_m – x_3\), and the system \(L_2(m)\) to consist of the inequality \(x_{m – 2}-x_{1} \leq x_m – x_{m-1}\); where \(x_1 < x_2 < \cdots < x_m\) in both \(L_1(m)\) and \(L_2(m)\). The main result of this paper is that \(R(L_1(m);2) = R(L_1(m);{Z}_m) = 2m\), and \(R(L_2(m);2) = 6m – 15\). Furthermore, we support the conjecture that \(R(L_1(m);2) = R(L_1(m);{Z}_m)\) by proving it for \(m = 5\).
In a given graph \(G\), a set \(S\) of vertices with an assignment of colors is a defining set of the vertex coloring of \(G\), if there exists a unique extension of the colors of \(S\) to a \(\chi(G)\)-coloring of the vertices of \(G\). A defining set with minimum cardinality is called a smallest defining set (of vertex coloring) and its cardinality, the defining number, is denoted by \(d(G, \chi)\). We study the defining number of regular graphs. Let \(d(n,r, \chi = k)\) be the smallest defining number of all \(r\)-regular \(k\)-chromatic graphs with \(n\) vertices, and \(f(n,k) = \frac{k-2}{2(k-1)} +\frac{2+(k-2)(k-3)}{2(k-1)}\). Mahmoodian and Mendelsohn (1999) determined the value of \(d(n,k, \chi = k)\) for all \(k \leq 5\), except for the case of \((n,k) = (10,5)\). They showed that \(d(n,k, \chi = k) = \lceil f(n,k) \rceil\), for \(k \leq 5\). They raised the following question: Is it true that for every \(k\), there exists \(n_0(k)\) such that for all \(n \geq n_0(k)\), we have \(d(n,k, \chi = k) = \lceil f(n,k) \rceil\)?
Here we determine the value of \(d(n,k, \chi = k)\) for each \(k\) in some congruence classes of \(n\). We show that the answer for the question above, in general, is negative. Also, for \(k = 6\) and \(k = 7\) the value of \(d(n,k, \chi = k)\) is determined except for one single case, and it is shown that \(d(10,5, \chi = 5) = 6\).
Let \((T_i)_{i\geq 0}\) be a sequence of trees such that \(T_{i+1}\) arises by deleting the \(b_i\) vertices of degree \(\leq 1\) from \(T_i\). We determine those trees of given degree sequence or maximum degree for which the sequence \(b_0, b_1, \ldots\) is maximum or minimum with respect to the dominance order. As a consequence, we also determine trees of given degree sequence or maximum degree that are of maximum or minimum Balaban index.
In this paper, we give a complete characterization of the pseudogracefulness of cycles.
The maximal clique that contains an edge which is not contained in any other maximal cliques is called essential. A graph in which each maximal clique is essential is said to be maximal clique irreducible. Maximal clique irreducible graphs were introduced and studied by W.D. Wallis and G.-H. Zhang in \(1990\) \([6]\). We extend the concept and define a graph to be weakly maximal clique irreducible if the set of all essential maximal cliques is a set of least number of maximal cliques that contains every edge. We characterized the graphs for which each induced subgraph is weakly maximal clique irreducible in \([4]\). In this article, we characterize the line graphs which are weakly maximal clique irreducible and also the line graphs which are maximal clique irreducible.
A weighted graph is one in which every edge \(e\) is assigned a non-negative number, called the weight of \(e\). For a vertex \(v\) of a weighted graph, \(d^w(v)\) is the sum of the weights of the edges incident with \(v\). For a subgraph \(H\) of a weighted graph \(G\), the weight of \(H\) is the sum of the weights of the edges belonging to \(H\). In this paper, we give a new sufficient condition for a weighted graph to have a heavy cycle. Let \(G\) be a \(k\)-connected weighted graph where \(2 \leq k\). Then \(G\) contains either a Hamilton cycle or a cycle of weight at least \(2m/(k+1)\), if \(G\) satisfies the following conditions:(1)The weighted degree sum of any \(k\) independent vertices is at least \(m\),(2) \(w(xz) = w(yz)\) for every vertex \(z \in N(x) \cap N(y)\) with \(d(z,y) = 2\), and (3)In every triangle \(T\) of \(G\), either all edges of \(T\) have different weights or all edges of \(T\) have the same weight.
A circulant digraph \(G(a_1, a_2, \ldots, a_k)\), where \(0 < a_1 < a_2 < \ldots < a_k < |V(G)| = n\), is the vertex transitive directed graph that has vertices \(i+a_1, i+a_2, \ldots, i+a_k \pmod{n}\) adjacent to each vertex \(i\). We give the necessary and sufficient conditions for \(G(a_1, a_2)\) to be hamiltonian, and we prove that \(G(a, n-a, b)\) is hamiltonian. In addition, we identify the explicit hamiltonian circuits for a few special cases of sparse circulant digraphs.
We find a family of graphs each of which is not Hall \(t\)-chromatic for all \(t \geq 3\), and use this to prove that the same holds for the Kneser graphs \(K_{a,b}\) when \(a/b \geq 3\) and \(b\) is sufficiently large (depending on \(3 – (a/b)\)). We also make some progress on the problem of characterizing the graphs that are Hall \(t\)-chromatic for all \(t\).
The chromatic sum of \(G\), denoted by \(\sum(G)\), is the minimum sum of vertex colors, taken over all proper colorings of \(G\) using natural numbers. In general, finding \(\sum(G)\) is NP-complete. This paper presents polynomial-time algorithms for finding the chromatic sum for unicyclic graphs and for outerplanar graphs.
We enumerate all order ideals of a garland, a partially ordered set which generalizes crowns and fences. Moreover, we give some bijection between the set of such ideals and the set of certain kinds of lattice paths.
In this paper, we consider transformations between posets \(P\) and \(Q\), whose semi bound graphs are the same. Those posets with the same double canonical posets can be transformed into each other by a finite sequence of two kinds of transformations, called \(d\)-additions and \(d\)-deletions.
A paired-dominating set of a graph \(G\) is a dominating set of vertices whose induced subgraph has a perfect matching. The paired-domination number of \(G\) is the minimum cardinality of a paired-dominating set of \(G\), and is obviously bounded below by the domination number of \(G\). We give a constructive characterization of the trees with equal domination and paired-domination numbers.
A recent series of papers by Anderson and Preece has looked at half-and-half terraces for cyclic groups of odd order, particularly focusing on those terraces which are narcissistic. We give a new direct product construction for half-and-half terraces which allows us to construct a narcissistic terrace for every abelian group of odd order. We also show that infinitely many non-abelian groups have narcissistic terraces.
Using generating functions of the author \(([1], [2])\), we obtain three infinite classes of combinatorial identities involving partitions with “\(n+t\) copies of \(n\)” introduced by the author and G.E. Andrews [3], and lattice paths studied by the author and D.M. Bressoud [4].
In this paper, we find necessary and sufficient conditions for the existence of a \(6\)-cycle system of \(K_n – E(R)\) for every \(2\)-regular, not necessarily spanning subgraph \(R\) of \(K_n\).
It is known that the smallest complete bipartite graph which is not \(3\)-choosable has \(14\) vertices. We show that the extremal configuration is unique.
We formalize the intuitive question of coloring the bricks of a wall in such a way that no repetition occurs in any row, nor any vertical line intersects two or more bricks with the same color. We achieve a complete classification up to the least number of required colors, among all dimensions of the walls, and all admitted incidences of the bricks. The involved combinatorial structures (namely, \(regular\) \(walls\)) are a special case of more general structures, which can be interpreted as adjacency matrices of suitable directed hypergraphs. Coloring the bricks is equivalent to coloring the arcs of the corresponding hypergraph. Regular walls seem interesting also for their connections with latin rectangles.
Tutte’s \(3\)-flow conjecture is equivalent to the assertion that there exists an orientation of the edges of a \(4\)-edge-connected, \(5\)-regular graph \(G\)for which the out-flow at each vertex is \(+3\) or \(-3\). The existence of one such orientation of the edges implies the existence of an equipartition of the vertices of \(G\) that separates the two possible types of vertices. Such an equipartition is called mod \(3\)-orientable. We give necessary and sufficient conditions for the existence of mod \(3\)-orientable equipartitions in general \(5\)-regular graphs, in terms of:(i) a perfect matching of a bipartite graph derived from the equipartition;(ii) the sizes of cuts in \(G\).Also, we give a polynomial-time algorithm for testing whether an equipartition of a \(5\)-regular graph is mod \(3\)-orientable.
In this paper, we look at generalizations of Stirling numbers which arise for arbitrary integer sequences and their \(k\)-th powers. This can be seen as a complementary strategy to the unified approach suggested in [9]. The investigations of [3] and [14] present a more algebraically oriented approach to generalized Stirling numbers.
In the first and second sections of the paper, we give the corresponding formulas for the generalized Stirling numbers of the second and first kind, respectively. In the third section, we briefly discuss some examples and special cases, and in the last section, we apply the square case to facilitate a counting approach for set partitions of even size.
In this paper, we give two sufficient conditions for a graph to be type \(1\) with respect to the total chromatic number and prove the following results:
(i) If \(G\) and \(H\) are of type \(1\), then \(G \times H\) is of type \(1\);
(ii) If \(\varepsilon(G) \leq v(G) + \frac{3}{2}\Delta(G) – 4\), then \(G\) is of type \(1\).
We prove several results dealing with various counting functions for partitions of an integer into four squares of equal parity. Some are easy consequences of earlier work, but two are new and surprising. That is, we show that the number of partitions of \(72n+ 60\) into four odd squares (distinct or not) is even.
We prove that if \(G\) is a simple graph of order \(n \geq 3k\) such that \(|N(x) \cup N(y)| \geq 3k\) for all nonadjacent pairs of vertices \(x\) and \(y\), then \(G\) contains \(k\) vertex-independent cycles.
The non-planar vertex deletion or vertex deletion \(vd(G)\) of a graph \(G = (V, E)\) is the smallest non-negative integer \(k\) such that the removal of \(k\) vertices from \(G\) produces a planar graph. Hence, the maximum planar induced subgraph of \(G\) has precisely \(|V| – vd(G)\) vertices. The problem of computing vertex deletion is in general very hard; it is NP-complete. In this paper, we compute the non-planar vertex deletion for the family of toroidal graphs \(C_n \times C_m\).
1970-2025 CP (Manitoba, Canada) unless otherwise stated.