Dalibor Froncek1, Petr Kovank2, Tereza Kovarova2
1University of Minnesota Duluth,
2Technical University of Ostrava
Abstract:

A graph G with k vertices is distance magic if the vertices can be labeled with numbers 1,2,,k so that the sum of labels of the neighbors of each vertex is equal to the same constant μ0. We present a construction of distance magic graphs arising from arbitrary regular graphs based on an application of magic rectangles. We also solve a problem posed by Shafig, Ali, and Simanjuntak.

Darren Narayan1
1School of Mathematical Sciences Rochester Institute of Technology
Abstract:

Given a graph G, a function f:V(G){1,2,,k} is a k-ranking of G if f(u)=f(v) implies every u-v path contains a vertex w such that f(w)>f(u). A k-ranking is \emph{minimal} if the reduction of any label greater than 1 violates the described ranking property. The rank number of a graph, denoted χr(G), is the minimum k such that G has a minimal k-ranking. The arank number of a graph, denoted ψr(G), is the maximum k such that G has a minimal k-ranking. It was asked by Laskar, Pillone, Eyabi, and Jacob if there is a family of graphs where minimal k-rankings exist for all χr(G)kψr(G). We give an affirmative answer showing that all intermediate minimal k-rankings exist for paths and cycles. We also give a characterization of all complete multipartite graphs which have this intermediate ranking property and which do not.

Dharam Chopra1, Rose Dios2, Sin-Min Lee3
1Department of Mathematics and Statistics Wichita State University Wichita, KS 67260, USA
2Department of Mathematical Sciences New Jersey Institute of Technology Newark, NJ 07102 USA
3Department of Computer Science San Jose State University San Jose, California 95192 U.S.A.
Abstract:

Let G be a (p,q)-graph where each edge of G is labeled by a number 1,2,,q without repetition. The vertex sum for a vertex v is the sum of the labels of edges that are incident to v. If the vertex sums are equal to a constant (mod k) where k2, then G is said to be Mod(k)-edge-magic. In this paper, we investigate graphs which are Mod(k)-edge-magic. When k=p, the corresponding Mod(p)-edge-magic graph is the edge-magic graph introduced by Lee (third author), Seah, and Tan in [10]. In this work, we investigate trees, unicyclic graphs, and (p,p+1)-graphs which are Mod(2)-edge-magic.

David Rivshin1, Stanislaw P. Radziszowski1
1Department of Computer Science Rochester Institute of Technology Rochester, NY 14622
Abstract:

First posed in 1942 by Kelly and Ulam, the Graph Reconstruction Conjecture is one of the major open problems in graph theory. While the Graph Reconstruction Conjecture remains open, it has spawned a number of related questions. In the classical vertex graph reconstruction number problem, a vertex is deleted in every possible way from a graph G, and then it can be asked how many (both minimum and maximum) of these subgraphs are required to reconstruct G up to isomorphism. This can then be extended to deleting k vertices in every possible way.

Previous computer searches have found the 1-vertex-deletion reconstruction numbers of all graphs of up to 11 vertices. In this paper, computed values of k-vertex-deletion reconstruction numbers for all graphs on up to 8 vertices and k|V(G)|2 are reported, as well as for some k for graphs on 9 vertices. Our data suggested a number of new theorems and conjectures. In particular, we pose, as a generalization of the Graph Reconstruction Conjecture, that any graph on 3k or more vertices is k-vertex-deletion reconstructible.

Sin-Min Lee1, Hsin-Hao Su2, Yung-Chin Wang3
1Department of Computer Science San Jose State University San Jose, CA 95192, USA
2Department of Mathematics Stonehill College Easton, MA 02357, USA
3Dept. of Physical Therapy Tzu-Hui Institute of Technology Taiwan, Republic of China
Abstract:

Let G be a simple graph with a vertex set V(G) and an edge set E(G), and let Z2={0,1}. A labeling f:V(G)Z2 induces an edge partial labeling f:E(G)Z2 defined by f(xy)=f(x) if and only if f(x)=f(y) for each edge xyE(G). For each iZ2, let vf(i)=|{vV(G):f(v)=i}| and ef(i)=|{eE(G):f(e)=i}|. The balance index set of G, denoted BI(G), is defined as {|ef(0)ef(1)|:|vf(0)vf(1)|1}. In this paper, we investigate and present results concerning the balance index sets of trees of diameter four.

Clicia V.P. Friedmann1, Abel R.G. Lozano1, Lilian Markenzon2, Christina F.E.M. Waga3
1FFP – Universidade do Estado do Rio de Janeiro Unigranrio, Brazil
2NCE – Universidade Federal do Rio de Janeiro, Brazil
3IME – Universidade do Estado do Rio de Janeiro, Brazil
Abstract:

In this paper, we present new results about the coloring of graphs. We generalize the notion of proper vertex-coloring, introducing the concept of range-coloring of order k. The relation between range-coloring of order k and total coloring is presented: we show that for any graph G that has a range-coloring of order Δ(G) with t colors, there is a total coloring of G that uses (t+1) colors. This result provides a framework to prove that some families of graphs satisfy the total coloring conjecture. We exemplify with the family of block-cactus graphs.

Spencer P.Hurd1, Dinesh G.Sarvate2, Narong Punnim3
1THE CITADEL, SCHOOL OF SCIENCE AND MATHEMATICS, CHARLESTON, SC, 29409
2COLLEGE OF CHARLESTON, DEPARTMENT OF MATHEMAT- I¢S, CHARLESTON, SC, 29424
3DEPARTMENT OF MATHEMATICS, SRINAKHARINWIROT UNI- VERSITY, SUKHUMVIT 23, BANGKOK 10110, THAILAND.
Abstract:

We show, for k=3,4,5, that the necessary conditions are sufficient for the existence of graph designs which decompose Kv(λ,j), the complete (multi)graph on v points with λ multiple edges for each pair of points and j loops at each vertex, into ordered blocks (a1,a2,,ak1,a1). Each block is the subgraph which contains both the set of unordered edges {ai,aj}, for each pair of consecutive edges in the ordered list, and also the loop at vertex a1.

Barbara Anthony1, Richard Denman1, Alison Marr1
1Department of Mathematics and Computer Science Southwestern University, Georgetown, TX 7862
Abstract:

We investigate the existence of fixed point families for the eccentric digraph (ED) operator, which was introduced in [1]. In [2], the notion of the period ρ(G) of a digraph G (under the ED operator) was defined, and it was observed, but not proved, that for any odd positive integer m, Cm×Cm is periodic, and that ρ(ED(Cm×Cm))=2ρ(ED(Cm)). Also in [2], the following question was posed: which digraphs are fixed points under the digraph operator? We provide a proof for the observations about Cm×Cm, and in the process show that these products comprise a family of fixed points under ED. We then provide a number of other interesting examples of fixed point families.

D.V. Chopra1, Richard M. Low2, R. Dios3
1Department of Mathematics and Statistics Wichita State University Wichita, KS 67260-0033, USA
2Department of Mathematics San Jose State University San Jose, CA 95192, USA
3Department of Mathematics New Jersey Institute of Technology Newark, NJ 07102-1982, USA
Abstract:

In this paper, we derive some necessary existence conditions for balanced arrays (B-arrays) of strength eight and with two levels by making use of some classical inequalities such as Cauchy, Hölder, and Minkowski. We discuss the usefulness of these conditions in the study of the B-arrays, and also present some illustrative examples.

JOHN J. LATTANZIO1
1Department of Mathematics Indiana University of Pennsylvania, Indiana, PA 15705
Abstract:

For a graph G having chromatic number k, an equivalence relation is defined on the set X consisting of all proper vertex k-colorings of G. This leads naturally to an equivalence relation on the set P consisting of all partitions of V(G) into k independent subsets of color classes. The notion of a partition type arises and the algebra of types is investigated.

Kevin Black1, Daniel Leven2, Stanislaw P.Radziszowski3
1Harvey Mudd College 340 East Foothill Boulevard Claremont, CA 91711
2Rutgers University 23562 BPO WAY Piscataway, NJ 08854
3Department of Computer Science Rochester Institute of Technology Rochester, NY 14623
Abstract:

We derive a new upper bound of 26 for the Ramsey number R(K5P3,K5), lowering the previous upper bound of 28. This leaves 25R(K5P5,K5)26, improving on one of the three remaining open cases in Hendry’s table, which listed Ramsey numbers for pairs of graphs (G,H) with G and H having five vertices.

We also show, with the help of a computer, that R(B2,B6)=17 and R(B2,B7)=18 by full enumeration of (B2,B6)-good graphs and (B2,B7)-good graphs, where Bn is the book graph with n triangular pages.

Chao-Chih Chou1, Meghan Galiardi2, Man Kong3, Sin-Min Lee4, Daniel Perry2
1General Education Center St. John’s University Tamsui, Taipei Shien, Taiwan
2Department of Mathematics Stonehill College Easton, MA 02357, USA
3Department of Electrical Engineering and Computer Science University of Kansas Laurence, KS 66045, USA
4Department of Computer Science San Jose State University San Jose, CA 95192, USA
Abstract:

Let G be a simple graph with vertex set V(G) and edge set E(G), and let Z2={0,1}. Any edge labeling f induces a partial vertex labeling f+:V(G)Z2 assigning 0 or 1 to f+(v), v being an element of V(G), depending on whether there are more 0-edges or 1-edges incident with v, and no label is given to f+(v) otherwise. For each iZ2, let vf(i)=|{vV(G):f+(v)=i}| and let ef(i)=|{eE(G):f(e)=i}|. An edge-labeling f of G is said to be edge-friendly if |ef(0)ef(1)|1. The edge-balance index set of the graph G is defined as EBI(G)={|vf(0)vf(1)|:f is edge-friendly}. In this paper, we investigate and present results concerning the edge-balance index sets of L-products of cycles with stars.

David Cariolaro1
1Department of Mathematical Sciences Xi’an Jiaotong-Liverpool University Suzhou, Jiangsu 215123 China
Abstract:

In [A.G. Chetwynd and A.J.W. Hilton, Critical star multigraphs, Graphs and Combinatorics 2(1986), 209-221], Chetwynd and Hilton started the investigations of the edge-chromatic properties of a particular class of multigraphs, which they called star multigraphs. A star multigraph is a multigraph such that there exists a vertex v that is incident with each multiple edge. Star multigraphs turn out to be useful tools in the study of the chromatic index of simple graphs.

The main goal of this paper is to provide shorter and simpler proofs of all the main theorems contained in the above-mentioned paper. Most simplifications are achieved by means of a formula for the chromatic index recently obtained by the author and by a careful use of arguments involving fans.

Edgar Gilbuena Amaca1, Hossein Shahmohamad1
1School of Mathematical Sciences Rochester Institute of Technology, Rochester, NY 146
Abstract:

The existence of an equivalence subset of rational functions with Fibonacci numbers as coefficients and the Golden Ratio as fixed point is proven. The proof is based on two theorems establishing basic relationships underlying the Fibonacci Sequence, Pascal’s Triangle, and the Golden Ratio.

Andrew Chung-Yeung Lee 1, Ho-Kuen Ng 2, Sin-Min Lee3
1E.E.C.S Dept. Syracuse University Syracuse, NY 13244, USA
2 Dept. of Mathematics San Jose State University San Jose, CA 95192, USA
3Dept. of Comp. Sci.San Jose State University San Jose, CA 95192, USA
Abstract:

The degree set D(G) of a graph G is the set of degrees of its vertices. It has been shown that when the cardinality of D(G) is 1 (i.e., G is regular) or 2 (i.e., G is bi-regular), the balance index set of G has simple structures. In this work, we determine the balance index sets of unicyclic graphs and subclasses of (p,p+1) graphs to demonstrate the application of this recent result. In addition, we give an explicit formula for the balance index sets of subclasses of complete tri-bipartite graphs G (|D(G)|=3). Structural properties regarding the balance index sets of a general graph G and application examples are also presented.

Meghan Galiardi1, Daniel Perry1, Hsin-Hao Su1
1Department of Mathematics Stonehill College Easton, MA 02357, USA
Abstract:

Let G be a simple graph with vertex set V(G) and edge set E(G), and let Z2={0,1}. Any edge labeling f induces a partial vertex labeling f+:V(G)Z2 assigning 0 or 1 to f+(v), v being an element of V(G), depending on whether there are more 0-edges or 1-edges incident with v, and no label is given to f+(v) otherwise. For each iZ2, let vf(i)=|{vV(G):f+(v)=i}| and ef(i)=|{eE(G):f(e)=i}|. An edge-labeling f of G is said to be edge-friendly if |ef(0)ef(1)|1. The edge-balance index set of the graph G is defined as EBI(G)={|vf(0)vf(1)|:f is edge-friendly}. In this paper, we investigate and present results concerning the edge-balance index sets of flux capacitors and L-products of stars with cycles.

Alexander Nien-Tsu Lee1, Sin-Min Lee2, Sheng-Ping Bill Lo3, Ho Kuen Ng4
1Department of Bioengineering University of California at San Diego La Jolla, California 92092
2Department of Computer Science San Jose State University San Jose, CA 95192
3Cisco Systems, Inc. 170, West Tasman Drive San Jose, CA 95134
4Department of Mathematics San Jose State University San Jose, CA 95192
Abstract:

Let G be a graph with vertex set V(G) and edge set E(G), and let A={0,1}. A labeling f:V(G)A induces a partial edge labeling f:E(G)A defined by f((u,v))=f(u) if and only if f(u)=f(v) for each edge (u,v)E(G). For iA, let vf(i)=card{vV(G):f(v)=i} and ef(i)=card{eE(G):f(e)=i}. A labeling f of G is said to be friendly if |vf(0)vf(1)|1. The balance index set of the graph G, BI(G), is defined as {|ef(0)ef(1)|:the vertex labeling f is friendly}. We determine the balance index sets of Halin graphs of stars and double stars.

Joel Lathrop1, Stanislaw Radziszowski1
1Department of Computer Science Rochester Institute of Technology
Abstract:

For a graph G, the expression Gv(a1,,ar) means that for any r-coloring of the vertices of G there exists a monochromatic ai-clique in G for some color i{1,,r}. The vertex Folkman numbers are defined as Fv(a1,,ar;q)=min{|V(G)|:Gv(a1,,ar) and KqG}. Of these, the only Folkman number of the form F(2,,2;r1) which has remained unknown up to this time is Fv(2,2,2,2,2;4).

We show here that Fv(2,2,2,2,2;4)=16, which is equivalent to saying that the smallest 6-chromatic K4-free graph has 16 vertices. We also show that the sole witnesses of the upper bound Fv(2,2,2,2,2;4)16 are the two Ramsey (4,4)-graphs on 16 vertices.

Spencer P. Hurd1, Dinesh G. Sarvate2
1The Citadel, School of Science and Mathematics, Charleston, Sc, 29409
2College of Charleston, Department of Mathematics, Char- Leston, Sc, 29424
Abstract:

We give cyclic constructions for loop designs with block size k=3,4, and 5, and all values of v, and we thereby determine the (v,λ) spectrum for LDs with these block sizes. For k=3,5 the (v,λ) spectrum for LDs is the same as that for cyclic LDs, but this is not true for k=4.

Anurag Agarwal1, Manuel Lopez1, Darren A. Narayan1
1School of Mathematical Sciences, RIT, Rochester, NY 14623-5604
Abstract:

A graph is representable modulo n if its vertices can be assigned distinct labels from {0,1,2,,n1} such that the difference of the labels of two vertices is relatively prime to n if and only if the vertices are adjacent. The representation number rep(G) is the smallest n such that G has a representation modulo n. In this paper, we determine the representation number and the Prague dimension (also known as the product dimension) of a complete graph minus a disjoint union of paths.

Adam Giambrone1, Erika L.C. King2
1Department of Mathematics Michigan State University, East Lansing, MI 48823
2Department of Mathematics and Computer Science Hobart and William Smith Colleges, Geneva, NY 14456
Abstract:

Given a graph G, let E be the number of edges in G. A \emph{vertex-magic edge labeling} of G, defined by Wallis [12] in 2001, is a one-to-one mapping from the set of edges onto the set {1,2,,E} with the property that at any vertex the sum of the labels of all the edges incident to that vertex is the same constant. In 2003, Hartnell and Rall [5] introduced a two-player game based on these labelings, and proved some nice results about winning strategies on graphs that contain vertices of degree one. In this paper, we prove results about winning strategies for certain graphs with cycles where the minimum degree is two.

Man C. Kong 1, Sin-Min Lee2, Herbert A. Evans3, Harris Kwong4
1Dept. of EE & CS University of Kansas Lawrence, KS 66045, USA
2Dept. of Comp. Sci. San Jose State Univ. San Jose, CA 95192, USA
3Dept. of Comp. Sci.San Jose State Univ.San Jose, CA 95192, USA
4Dept. of Math. Sci.SUNY at Fredonia Fredonia, NY 14063, USA
Abstract:

A vertex labeling f:V{0,1} of the simple graph G=(V,E) induces a partial edge labeling f:E{0,1} defined by f(uv)=f(u) if and only if f(u)=f(v). Let v(i) and e(i) be the number of vertices and edges, respectively, that are labeled i, and define the balance index set of G as {|e(0)e(1)|:|v(0)v(1)|1}. In this paper, we determine the balance index sets of generalized wheels, which are the Zykov sum of a cycle with a null graph.

Jobby Jacob1, Renu Laskar2, John Villalpando3
1School of Mathematical Sciences Rochester Institute of Technology, Rochester, NY 14623.
2Department of Mathematical Sciences Clemson University, Clemson, SC 29634.
3Department of Mathematical Sciences Gonzaga University, Spokane, WA 99258.
Abstract:

The channel assignment problem is the problem of assigning radio frequencies to transmitters while avoiding interference. This problem can be modeled and examined using graphs and graph colorings. L(2,1) coloring was first studied by Griggs and Yeh [6] as a model of a variation of the channel assignment problem. A no-hole coloring, introduced in [4], is defined to be an L(2,1) coloring of a graph which uses all the colors {0,1,,k} for some integer k. An L(2,1) coloring is irreducible, introduced in [3], if no vertex labels in the graph can be decreased and yield another L(2,1) coloring. A graph G is inh-colorable if there exists an irreducible no-hole coloring on G.

We consider the inh-colorability of bipartite graphs and Cartesian products. We obtain some sufficient conditions for bipartite graphs to be inh-colorable. We also find the optimal inh-coloring for some Cartesian products, including grid graphs and the rook’s graph.

Futaba Fujie-Okamoto1, Jianwei Lin2, Ping Zhang2
1Mathematics Department University of Wisconsin La Crosse La Crosse, WI 54601
2Department of Mathematics Western Michigan University Kalamazoo, MI 49008
Abstract:

Let G be a nontrivial connected graph of order n and k an integer with 2kn. For a set S of k vertices of G, let κ(S) denote the maximum number of pairwise edge-disjoint trees T1,T2,,T in G such that V(Ti)V(Tj)=S for every pair i,j of distinct integers with 1i,j. A collection {T1,T2,,T} of trees in G with this property is called a set of internally disjoint trees connecting S. The k-connectivity κk(G) of G is defined as κk(G)=min{κ(S)}, where the minimum is taken over all k-element subsets S of V(G). Thus κ2(G) is the connectivity κ(G) of G. In an edge-colored graph G in which adjacent edges may be colored the same, a tree T is a rainbow tree in G if no two edges of T are colored the same. For each integer with 1κk(G), a (k,)-rainbow coloring of G is an edge coloring of G (in which adjacent

Simon R. Blackburn1, Maura B. Paterson2, Douglas R. Stinson3
1Royal Holloway, University of London Egham, Surrey TW20 OTN, United Kingdom
2Birkbeck College, University of London Malet Street, London WC1E 7HX, United Kingdom
3David R. Cheriton School of Computer Science University of Waterloo, Waterloo, ON, N2L 3G1, Canada
Abstract:

Given a right-angled triangle of squares in a grid whose horizontal and vertical sides are n squares long, let N(n) denote the maximum number of dots that can be placed into the cells of the triangle such that each row, each column, and each diagonal parallel to the long side of the triangle contains at most one dot. It has been proven that Nf(n)=2n+13. In this note, we give a new proof of the upper bound Nf(n)2n+13 using linear programming techniques.

David Leach1, Matthew Walsh2
1Department of Mathematics, University of West Georgia Carrollton, GA 30118 USA
2Department of Mathematical Sciences, Indiana-Purdue University Fort Wayne, IN 46805 USA
Abstract:

In 1975, Leech introduced the problem of labeling the edges of a tree with distinct positive integers so that the sums along distinct paths in the tree were distinct, and the set of such path-sums were consecutive starting with one. We generalize this problem to labelings from arbitrary finite Abelian groups, with a particular focus on direct products of the additive group of Z2.

Harris Kwong 1, Sin-Min Lee2, Yung-Chin Wang 3
1Dept. of Math. Sci. SUNY Fredonia Fredonia, NY 14063, USA San Jose, CA 95192, USA
2Dept. of Comp. Sci. San Jose State University San Jose, CA 95192, USA
3Dept. of Physical Therapy Tzu-Hui Institute of Tech. Taiwan, Republic of China
Abstract:

Let G be a simple graph. Any vertex labeling f:V(G)Z2 induces an edge labeling f:E(G)Z2 according to f(xy)=f(x)+f(y). For each iZ2, define vf(i)=|{vV(G):f(v)=i}|, and ef(i)=|{eE(G):f(e)=i}|. The friendly index set of the graph G is defined as {|ef(0)ef(1)|:|vf(0)vf(1)|1}. We determine the friendly index sets of connected (p,p+1)-graphs with minimum degree 2. Many of them form arithmetic progressions. Those that are not miss only the second terms of the progressions.

E-mail Alert

Add your e-mail address to receive upcoming issues of Journal of Combinatorial Mathematics and Combinatorial Computing (JCMCC).

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;