Bhaskar Bagchi1
1 Theoretical Statistics and Mathematics Division indian Statistical Institute Calcutta 700 035 INDIA
Abstract:

We obtain a new characterization, by a configuration theorem, of the Miquelian geometries among the finite inversive (= Möbius) planes of even order. The main tool used is a characterization due to J. Tits of elliptic ovoids in three-dimensional projective space,

Yang Yuansheng1
1Dalian University of Technology People’s Republic of China
Abstract:

Let \(E_n\) denote the minimum number of edges in a graph that contains every tree with \(n\) edges. This article provides two sets of data concerning \((n+1)\)-vertex graphs with \(E_n\) edges for each \(n \leq 11\): first, a minimum set of trees with \(n\) edges such that all trees with \(n\) edges are contained in such a graph whenever it contains the trees in the minimum set; second, all mutually nonisomorphic graphs that contain all trees with \(n\) edges.

Hong-Jian Lai1
1Department of Mathematics West Virginia University Morgantown, WV 26506
Abstract:

A graph \(H\) is \underline{collapsible} if for every even subset \(W \subseteq V(H)\), \(H\) has a spanning connected subgraph whose set of odd-degree vertices is \(W\). In a graph \(G\), there is a unique collection of maximal collapsible subgraphs, and when all of them are contracted, the resulting contraction of \(G\) is a reduced graph. Reduced graphs have been shown to be useful in the study of supereulerian graphs, hamiltonian line graphs, and double cycle covers, (see[2], [3], [4] [6] ), among others. It has been noted that subdividing an edge of a collapsible graph may result in a noncollapsible graph. In this note we characterize the reduced graphs of elementary subdivision of collapsible graphs of diameter at most two. We also obtain a converse of a result of Catlin [3] when restricted to graphs of diameter at most two. The main result is used to study some hamiltonian property of line graphs.

Gerhard Benadé1, Izak Broere1
1Department of Mathematics Rand Afrikaans University Johannesburg SOUTH AFRICA
Abstract:

The \(F\)-free chromatic number \(\chi(M:-F)\) of a graph \(M\) is defined as the least number of classes in a partition of the vertices of \(M\) such that \(F\) does not occur as an induced subgraph in the subgraph induced by any of the colour classes. Two graphs \(G\) and \(H\) are called chromatically related if, for each positive integer \(k\), there exists a graph \(M\) such that \(\chi(M:-G) = \chi(M:-H) = k\), and distantly related whenever a chain of such relatednesses exists between them. Using a basic theorem of Folkman [3], we show that every two graphs on at least two vertices are distantly related.

G.M. Saha1, R.K. Mitra2
1Indian Statistical Institute Calcutta — 700 035
2M.J. College Jalgaon, Maharashtra INDIA
Abstract:

BIBRC (balanced incomplete block with nested rows and columns) designs were introduced by Singh and Dey [1979] and these designs were mostly obtained by trial and error. Agrawal and Prasad [1983] gave some systematic methods of construction of these designs. We provide further systematic and general methods of construction of BIBRC designs in the present note.

James A. Davis1
1University of Richmond, VA 23173
Abstract:

An exponent bound is presented for abelian \((p^{i+j}, p^i, p^{i+j},p^j)\) relative difference sets: this bound can be met for \(i \leq j\).

Ryan B.Hayward1
1Department of Computing and Information Science Queen’s University Kingston, Ontario Canada K7L 3N6
Abstract:

A smallest transversal of a \(k\)-graph (or \(k\)-uniform hypergraph) is any smallest set of vertices that intersects all edges. We investigate smallest transversals of small (up to ten vertex) \(3\)-graphs. In particular, we show how large the smallest transversal of small \(3\)-graphs can be as a function of the number of edges and vertices. Also, we identify all \(3\)-graphs with up to nine vertices that have largest smallest transversals. This work is related to a problem of Turán, and to the covering problem. In particular, extremal \(3\)-graphs correspond to covering designs with blocks of size \(n-3\).

R.A.R. Butler1, D.G. Hoffman1
1 Division of Mathematics Auburn University Auburn, Alabama 36849-5307 U.S.A.
Abstract:

We determine those triples \((g, u, k)\) for which there exists a pair of group divisible designs with block size \(3\), each on the same \(u\) groups of size \(g\), having exactly \(k\) blocks in common.

Giinter F.Steinke1
1 Department of Mathematics and Statistics University of Auckland Private Bag Auckland, NEW ZEALAND
Abstract:

Using the explicit determination of all ovals in the 3 non-Desarguesian projective planes of order 9 given in [4] or [8], we prove that there are no other Benz planes of order 9 than the three miquelian planes and the Minkowski plane over the Dickson near-field of type \(\{3,2\}\).

THOMAS NIESSEN1
1 LEHRSTUHL IT FOR MaTHEMATIK, RWTH AACHEN, TEMPLERGRABEN 55, W-5100 AACHEN, FEDERAL REPUBLIC OF GERMANY
Abstract:

Sufficient conditions depending on the minimum degree and the independence number of a simple graph for the existence of a \(k\)-factor are established.

Zhang Xuebin1
1 Teaching and Research Section of Mathematics Nanjing Architectural and Civil Engineering Institute Nanjing, 210009 People’s Republic of China
Abstract:

In this paper, we shall establish some construction methods for resolvable Mendelsohn designs, including constructions of the product type. As an application,we show that the necessary condition for the existence of a \((v, 4, \lambda)\)-RPMD, namely,
\(v \equiv 0\) or \(1\) (mod 4), is also sufficient for \(\lambda > 1\) with the exception of pairs \((v,\lambda)\)
where \(v = 4\) and \(\lambda\) odd. We also obtain a (v, 4, 1)-RPMD for \(v = 57\) and \(93\).

A. Muthusamy1
1Department of Mathematics Annamalai University Annamalainagar 608 002 India
Abstract:

A counterexample is presented to the following conjecture of Jackson: If \(G\) is a 2-connected graph on at most \(3k + 2\) vertices with degree sequence \((k, k, \ldots, k, k+1, k+1)\), then \(G\) is hamiltonian.

Joseph A.Gallian1, John Prout1, Steven Winters1
1 Department of Mathematics and Statistics University of Minnesota, Duluth Duluth, MN 55812
Abstract:

We provide graceful and harmonious labelings for all vertex deleted and edge-deleted prisms. We also show that with the sole exception of the cube all prisms are harmonious.

Song Zeng Min1
1 Department of Mathematics, Southeast University, Nanjing, 210018, P.R.China
Abstract:

Let \(G\) be a 2-connected simple graph of order \(n\) (\(\geq 3\)) with connectivity \(k\). One of our results is that if there exists an integer \(t\) such that for any distinct vertices \(u\) and \(v\), \(d(u,v) = 2\) implies \(|N(u) \bigcup N(v)| \geq n-t\), and for any independent set \(S\) of cardinality \(k+1\), \(\max\{d(u) \mid u \in S\} \geq t\), then \(G\) is hamiltonian. This unifies many known results for hamiltonian graphs. We also obtain a similar result for hamiltonian-connected graphs.

Chi Wang1
1RUTCOR, Rutgers University New Brunswick, NJ 08903
Abstract:

A graph \(G = (V(G), E(G))\) is the competition graph of an acyclic digraph \(D = (V(D), A(D))\) if \(V(G) = V(D)\) and there is an edge in \(G\) between vertices \(x, y \in V(G)\) if and only if there is some \(v \in V(D)\) such that \(xv, yv \in A(D)\). The competition number \(k(G)\) of a graph \(G\) is the minimum number of isolated vertices needed to add to \(G\) to obtain a competition graph of an acyclic digraph. Opsut conjectured in 1982 that if \(\theta(N(v)) \leq 2\) for all \(v \in V(G)\), then the competition number \(k(G)\) of \(G\) is at most \(2\), with equality if and only if \(\theta(N(v)) = 2\) for all \(v \in V(G)\). (Here, \(\theta(H)\) is the smallest number of cliques covering the vertices of \(H\).) Though Opsut (1982) proved that the conjecture is true for line graphs and recently Kim and Roberts (1989) proved a variant of it, the original conjecture is still open. In this paper, we introduce a class of so-called critical graphs. We reduce the question of settling Opsut’s conjecture to the study of critical graphs by proving that Opsut’s conjecture is true for all graphs which are disjoint unions of connected non-critical graphs. All \(K_4\)-free critical graphs are characterized. It is proved that Opsut’s conjecture is true for critical graphs which are \(K_4\)-free or are \(K_4\)-free after contracting vertices of the same closed neighborhood. Some structural properties of critical graphs are discussed.

Douglas S. Jungreis1, Michael Reid1
1Department of Mathematics University of California, Berkeley Berkeley, California 94720
Abstract:

We investigate the existence of \(a\)-valuations and sequential labelings for a variety of grids in the plane, on a cylinder and on a torus.

Song Zeng Min1, Qin Yu Sheng2
1 Department of Mathematics, Southeast University, Nanjing, 210018, P.R. China
2 Department of Mathematics, Nanjing University, Nanjing, 210008, P.R. China
Abstract:

Let \(G\) be a simple graph of order \(n\) with independence number \(\alpha\). We prove in this paper that if, for any pair of nonadjacent vertices \(u\) and \(v\), \(d(u)+d(v) \geq n+1\) or \(|N(u) \cap N(v)| \geq \alpha\), then \(G\) is \((4, n-1)\)-connected unless \(G\) is some special graphs. As a corollary, we investigate edge-pancyclicity of graphs.

Arundhati Raychaudhuri1
1 Department of Mathematics The College of Staten Island (CUNY) 130 Stuyvesant Place Staten Island, New York 10301
Abstract:

In this paper, we study the powers of two important classes of graphs — strongly chordal graphs and circular arc graphs. We show that for any positive integer \(k \geq 2\), \(G^{k-1}\) is a strongly chordal graph implies \(G^k\) is a strongly chordal graph. In case of circular arc graphs, we show that every integral power of a circular arc graph is a circular arc graph.

ZOLTAN FUREDI1, L. Spissich2
1Mathematical Institute of the Hungarian Academy of Sciencies, 1364 Budapest, P. O. B. 127, Hungary
2 18500 Papa, Koltoi A. u. 21., Hungary
Abstract:

A partial plane of order \(n\) is a family \(\mathcal{L}\) of \(n+1\)-element subsets of an \(n^2+n+1\)-element set, such that no two sets meet more than \(1\) element. Here it is proved, that if \(\mathcal{L}\) is maximal, then \(|\mathcal{L}| \geq \lfloor\frac{3n}{2}\rfloor + 2\), and this inequality is sharp.

Sharon Cabaniss1, Richard Low1, John Mitchem1
1 Mathematics and Computer Science Department San Jose State University San Jose, CA 95192
Wayne Goddard1, Henda C.Swart2
1Department of Mathematics Massachusetts Institute of Technology Cambridge, MA 02139 USA
2Department of Mathematics University of Natal 4001 Durban South Africa
Abstract:

The binding number of a graph \(G \) is defined to be the minimum of \(|N(S)|/|S| \) taken over all nonempty \(S \subseteq V(G) \) such that \(N(S) \neq V(G) \). In this paper, two general results for the binding numbers of product graphs are obtained. (1) For any \(G \) on \(m \) vertices, it is shown that \( bind (G \times K_n) = \frac{nm-1}{nm-\delta(G)-n+1} \) for all \(n \) sufficiently large.(2) For arbitrary \(G \) and for \(H \) with \( bind(H) \geq 1 \), a (relatively) simple expression is derived for \( bind (G[H]) \).

Y.H. PENG1
1Department of Mathematics Universiti Pertanian Malaysia 48400 Serdang, Selangor D.E., Malaysia
Abstract:

We give explicit expressions for the sixth and seventh chromatic coefficients of a bipartite graph. As a consequence, we obtain a necessary condition for two bipartite graphs to be chromatically equivalent.

E. Barbut1, A. Bialostocki1
1 Department of Mathematics and Applied Statistics University of Idaho Moscow, ID 83843
Abstract:

The notion of a regular tournament is generalized to \(r\)-tournaments. By means of a construction, it is shown that if \(n \mid \binom{n}{r}\) and \((n,r) = p^k\), where \(p\) is a prime, and \(k \geq 0\), then there exists a regular \(r\)-tournament on \(n\) vertices.

Frank Harary1, Jerald A.Kabell2, ER. McMorris3
1 Department of Computer Science New Mexico State University Las Cruces, NM 88003
2Department of Computer Science Central Michigan University Mount Pleasant, MI 48859
3Department of Mathematics University of Louisville Louisville, KY 40292
Abstract:

We characterize those digraphs that are the acyclic intersection digraphs of subtrees of a directed tree. This is accomplished using the semilattice of subtrees of a rooted tree and the reachability relation.

Pranava K.Jha 1, Giora Slutzki2
1AP (Computer Science) NERIST Itanagar Itanagar 791110, India
2Dept. of Computer Science Iowa State University Ames, Iowa 50011
Abstract:

Let \(G = (V, E)\) be a finite, simple graph. For a triple of vertices \(u, v, w\) of \(G\), a vertex \(x\) of \(G\) is a median of \(u, v\), and \(w\) if \(x\) lies simultaneously on shortest paths joining \(u\) and \(v\), \(v\) and \(w\), and \(w\) and \(u\) respectively. \(G\) is a median graph if \(G\) is connected, and every triple of vertices of \(G\) admits a unique median. There are several characterizations of median graphs in the literature; one given by Mulder is as follows: \(G\) is a median graph if and only if \(G\) can be obtained from a one-vertex graph by a sequence of convex expansions. We present an \(O(|V|^2 \log |V|)\) algorithm for recognizing median graphs, which is based on Mulder’s convex-expansions technique. Further, we present an \(O(|V|^2 \log |V|)\) algorithm for obtaining an isometric embedding of a median graph \(G\) in a hypercube \(Q_n\) with \(n\) as small as possible.

M.L. Fiol1, M.A. Fiol2, J.L.A. Yebra2
1Universitat Autonoma de Barcelona
2Universitat Politécnica de Catalunya
Abstract:

Let \(D_\Delta(G)\) be the Cayley colored digraph of a finite group \(G\) generated by \(\Delta\). The arc-colored line digraph of a Cayley colored digraph is obtained by appropriately coloring the arcs of its line digraph. In this paper, it is shown that the group of automorphisms of \(D_\Delta(G)\) that act as permutations on the color classes is isomorphic to the semidirect product of \(G\) and a particular subgroup of \(Aut\;G\). Necessary and sufficient conditions for the arc-colored line digraph of a Cayley colored digraph also to be a Cayley colored digraph are then derived.

Ciping Chen1
1Beijing Agricultural Engineering University Beijing 100083, China
Abstract:

Chvatal [1] presented the conjecture that every \(k\)-tough graph \(G\) has a \(k\)-factor if \(G\) satisfies trivial necessary conditions. The truth of Chvatal’s conjecture was proved by Enomoto \({et\; al}\) [2]. Here we prove the following stronger results: every
\(k\)-tough graph satisfying trivial necesary conditions has a k-factor which contains an arbitrarily given edge if \(k \geq 2\), and also has a \(k\)-factor which does not contain an arbitrarily given edge \(v(k \geq 1)\).

H. L. Abbott1, C.M. Pareek1
1 Department of Mathematics University of Alberta Edmonton, Alberta Canada T6G 2G1
Abstract:

Szemerédi’s density theorem extends van der Waerden’s theorem by saying that for any \(k\) and \(c\), \(0 < c < 1\), there exists an integer \(n_0 = n_0(k, c)\) such that if \(n > n_0\) and \(S\) is a subset of \(\{1, 2, \ldots, n\}\) of size at least \(cn\) then \(S\) contains an arithmetic progression of length \(k\). A “second order density” result of Frankl, Graham, and Rödl guarantees that \(S\) contains a positive fraction of all \(k\)-term arithmetic progressions. In this paper, we prove the analogous result for the Gallai-Witt theorem, a multi-dimensional version of van der Waerden’s theorem.

David C. Kay1
1The University of North Carolina at Asheville Department of Mathematics Asheville, NC 28804-3299
Abstract:

This paper discusses the chromatic number of the products of \(n+1\) -chromatic hypergraphs. The following two results are proved:
Suppose \(G\) and \(H\) are \(n+ 1\) -chromatic hypergraphs such that each of \(G\) and \(H\) contains a complete sub-hypergraph of order n and each of \(G\)    and \(H\) contains a vertex critical \(n + 1\)-chromatic sub-hypergraph which has non-empty intersection with the corresponding complete sub-hypergraph of order \(n\). Then the product \(G \times H\)is of chromatic number \(n + 1\).
Suppose \(G\) is an \(n+ 1\)-chromatic hypergraph such that each vertex of \(G\) is contained in a complete sub-hypergraph of order n. Then for any \(n + 1\)-chromatic hypergraph \(H\), \(G \times H \) is an \(n + 1\)-chromatic hypergraph.

Hongyuan Lai1
1Wayne State University, Detroit, MI 48202
Abstract:

A set \(S\) is called \(k\)-multiple-free if \(S \cap kS = \emptyset\), where \(kS = \{ks : s \in S\}\). Let \(N_n = \{1, 2, \ldots, n\}\). A \(k\)-multiple-free set \(M\) is maximal in \(N_n\) if for any \(k\)-multiple-free set \(A\), \(M \subseteq A \subseteq N_n\) implies \(M = A\). Let

\[A(n, k) = \{|M| : M \subseteq N_n is maximal k -multiple-free\}\].

Formulae of \(\lambda(n,k)= \max \Lambda(n, k)\) and \(\mu(n, k) = \min \Lambda(n, k)\) are given. Also, the condition for \(\mu(n, k) = \Lambda(n, k)\) is characterized.

Richard K. Guy1, C. KRATTENTHALER2, Bruce E. Sagan3
1Department of Mathematics and Statistics The University of Calgary Calgary, Alberta, Canada
2T2N 1N4 Institut fiir Mathematik der Universitat Wien, Strudlhofgasse 4 A-1090 Wien, Austria
3Department of Mathematics Michigan State University East Lansing, MI 48824-1027 USA
Abstract:

We enumerate various families of planar lattice paths consisting of unit steps in directions \( {N}\), \({S}\), \({E}\), or \({W}\), which do not cross the \(x\)-axis or both \(x\)- and \(y\)-axes. The proofs are purely combinatorial throughout, using either reflections or bijections between these \({NSEW}\)-paths and linear \({NS}\)-paths. We also consider other dimension-changing bijections.

E-mail Alert

Add your e-mail address to receive upcoming issues of Ars Combinatoria.

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;