Rumen N.Daskalov1
1 Department of Mathematics Technical University 5300 Gabrovo Bulgaria
Abstract:

A binary linear code of length \(n\), dimension \(k\), and minimum distance at least \(d\) is called an \([n,k,d]\)-code. Let \(d(n,k) = \max \{d : \text{there exists an } [n,k,d]\text{-code}\}\). It is currently known by [6] that \(26 \leq d(66,13) \leq 28\). The nonexistence of a linear \([66,13,28]\)-code is proven.

Chang Yanxun1
1Research Institute of Math., Hebei Normal College Shijiazhuang, P. R. China
Abstract:

In this paper, we completely solve the existence problem of \(\text{LOTS}(v)\) (i.e. large set of pairwise disjoint ordered triple systems of order \(v\)).

Y. Miao1, L. Zhu2
1 Mathematics Teaching-Research Section Suzhou Institute of Silk Textile Technology Suzhou, 215005, P.R. China
2 Department of Mathematics Suzhou University Suzhou, 215006, P.R. China
Abstract:

It is shown that a resolvable BIBD with block size five and index two exists whenever \(v \equiv 5 \pmod{10}\) and \(v \geq 50722395\). This result is based on an updated result on the existence of a BIBD with block size six and index unity, which leaves \(88\) unsolved cases. A construction using difference families to obtain resolvable BIBDs is also presented.

E.E. Guerin1
1Department of Mathematics Seton Hall University South Orange, NJ 07079
Abstract:

Functions \(c(n)\) and \(h(n)\) which count certain consecutive-integer partitions of a positive integer \(n\) are evaluated, and combinatorial interpretations of partitions with “\(c(n)\) copies of \(n\)” and “\(h(n)\) copies of \(n\)” are given.

Yang Yuansheng1, Zhang Chengxue1, Ding Shanjing1
1 Department of Computer Science & Engineering Daling University of Technology 116024 Dalian People’s Republic of China
Abstract:

J. Leech has posed the following problem: For each integer \(n\), what is the greatest integer \(N\) such that there exists a labelled tree with \(n\) nodes in which the distance between the pairs of nodes include the consecutive values \(1,2,\ldots,N\)? With the help of a computer, we get \(B(n)\) (the number \(N\) for branched trees) for \(2 \leq n \leq 10\) and lower bounds of \(B(11)\) and \(B(12)\). We also get \(U(n)\) (the number \(N\) for unbranched trees) for \(2 \leq n \leq 11\) independently, confirming some results gotten by J. Leech.

Lakshmi Narayani1, John L.Blanchard1
1The Ohio State University
Abstract:

A method is presented for constructing simple partially balanced designs from \(t-(v,k,\lambda)\) designs. When the component designs satisfy a compatibility condition the result is a simple balanced design. The component designs can even be trivial (with some exceptions) with the resulting design being nontrivial. The automorphism group of the composition is given in terms of the automorphism groups of the component designs. Some previously unknown simple designs are constructed, including an infinite family of \(3\)-designs that are extremal with respect to an inequality of Cameron and Praeger. Some analogous theorems are given for difference families.

Shen Hao1, Wen Hong1
1 Department of Applied Mathematics Shanghai Jiao Tong University Shanghai 200030 People’s Republic of China
Abstract:

In this paper, constructions of simple cyclic \(2\)-designs are given. As a consequence, we determined the existence of simple \(2\)-\((q,k,\lambda)\) designs for every admissible parameter set \((q,k,\lambda)\) where \(q \leq 29\) is an odd prime power, with two undecided parameter sets \((q,k,\lambda) = (29,8,6)\) and \((29,8,10)\).

Andrew Vince1
1Department of Mathematics Universiry of Florida, Gainesville, FL. 32611
Abstract:

A map is an embedding of a graph into a surface so that each face is simply connected. Geometric duality, whereby vertices and faces are reversed, is a classic construction for maps. A generalization of map duality is given and discussed both graph and group theoretically.

C.A. Whitehead1
1 Department of Mathematical Studies Goldsmiths’ College University of London
Abstract:

We show how a claw-free well-covered graph containing no \(4\)-cycle, with any given independence number \(m\), can be constructed by linking together \(m\) sub-graphs, each isomorphic to either \(K_2\) or \(K_3\). We show further that the only well-covered connected claw-free graphs containing no \(4\)-cycle that cannot be constructed in this way are \(K_1\), and the cycle graphs on \(5\) and \(7\) vertices respectively.

C. Zaverdinos1
1 Department of Mathematics and Applied Mathematics University of Natal P.O. Box 375 Pietermaritzburg S. Africa, 3200
Abstract:

In [3] R. Brauer asked the question: When is an \(n \times n\) complex matrix \(X\) the ordinary character table of some finite group? It is shown that the problem can be reduced in polynomial time to that of VERTEX INDEPENDENCE. We also pose and solve some (much) simpler problems of a related combinatorial nature.

Zhibo Chen1
1Department of Mathematics Penn State University, McKeesport PA 15132, U.S.A.
Abstract:

Let \(\mathbb{F}_q = \text{GF}(q^n)\) denote the finite field of order \(q^n\), and let \(U_n = \cup_{i=1}^{n}(\mathbb{F}_i,)\). Explicit permutation-type formulas for the Frobenius map \(\varphi\) (defined by \((\varphi(x)) = x^q\)) on \(\mathbb{F}_n\) and on \(U_n\) are obtained by using the well-known number \(N_q\) (the number of monic irreducible polynomials of degree \(i\) in \(\mathbb{F}_1[x]\)). Some results in [1] and [2] can be obtained from these formulas. Moreover, some other results are also given by using Pólya’s counting theory.

Phyllis Zweig Chinn1, Lin Yixun2, Yuan Jinjiang2, Kenneth Williams3
1 Humboldt State University
2 Zhengzhou University
3Western Michigan University
Abstract:

The composition of two graphs \(G\) and \(H\), written \(G[H]\), is the graph with vertex set \(V(G) \times V(H)\) and \((u_1,v_1)\) is adjacent to \((u_2,v_2)\) if \(u_1\) is adjacent to \(u_2\) in \(G\) or if \(u_1 = u_2\) and \(v_1\) is adjacent to \(v_2\) in \(H\). The \(r\)th power of graph \(G\), denoted \(G^r\), is the graph with vertex set \(V(G)\) and edge set \(\{(u,v) : d(u,v) \leq r \text{ in } G\}\). The bandwidth of graph \(G\) is \(\min \max |f(u) – f(v)|\), where the max is taken over each edge \(uv \in E(G)\), and the min is over all proper numberings \(f\). This paper establishes tight upper and lower bounds for the bandwidth of an arbitrary graph composition \(G[H]\), with the upper bound based only on \(|V(H)|\) and the bandwidth of \(G\). In addition, the exact bandwidth of the composition of \(G[H]\) is established for \(G\) the power of a path or a cycle.

Hans-Dietrich O.F.Gronau1, Jaroslav Nexetfil2
1University of Rostock Department of Mathematics Universitatsplate 1, Rostock Germany
2 Charles University Department of Applied Mathematics (KAM) Malostranske nam. 25, 11800 Prague, Czechoslovakia
Margaret B.Cozzens1, Shu-Shih Y.Wu1
1 Department of Mathematics Northeastern University Boston, MA 02115, USA
Abstract:

The edge-neighbor-connectivity of a graph \(G\) is the minimum size of all edge-cut-strategies of \(G\), where an edge-cut-strategy consists of a set of common edges of double stars whose removal disconnects the graph \(G\) or leaves a single vertex or \(\emptyset\). This paper discusses the extreme values of the edge-neighbor-connectivity of graphs relative to the connectivity, \(\kappa\), and gives two classes of graphs — one class with minimum edge-neighbor-connectivity, and the other one with maximum edge-neighbor-connectivity.

Maria Rita Casali 1
1 Dipartimento di Matematica Pura ed Applicata Universita di Modena Via Campi 213 B I-41100 MODENA (lIlaly)
Abstract:

In \([V_2]\), Vince outlined three potential graph algorithms for \(S^3\) recognition, namely shelling, reducing, and closing; on the other hand, he conjectured that the graph \(H_0\ ) of Fig.1 – which proves the first two to fail – could be a counterexample for the third one, too. This note shows that the conjecture is false; so, the validity of the closing algorithm is still an open problem.

Siemion Fajilowicz1, Tamara McColgan2, Talmage Reid2, William Staton2
1 Department of Mathematics University of Houston Houston, TX 77204-3476
2Department of Mathematics The University of Mississippi University, MS 38677
Abstract:

We consider two variations of the classical Ramsey number. In particular, we seek the number of vertices necessary to force the existence of an induced regular subgraph on a prescribed number of vertices.

Mark K.Goldberg1, Hilton C.Russell2
1Department of Computer Science Rensselaer Polytechnic Institute Troy, New York 12181
2 Department of Mathematics United States Military Academy West Point, New York 10996
Clark Kimberling1
1Department of Mathematics University of Evansville Evansville, Indiana 47722 U.S.A.
Jiping Liu1, Qinglin Yu2,3
1Department of Mathematics and Statistics Simon Fraser University Bumaby, B.C. Canada
2Department of Mathematics University College of The Cariboo and Department of Mathematics
3 Statistics Simon Fraser University Burnaby, B.C. Canada
Abstract:

The \(i\)-center \(C_i(G)\) of a graph \(G\) is the set of vertices whose distances from any vertex of \(G\) are at most \(i\). A vertex set \(X\) \(k\)-dominates a vertex set \(Y\) if for every \(y \in Y\) there is a \(x \in X\) such that \(d(x,y) \leq k\). In this paper, we prove that if \(G\) is a \(P_t\)-free graph and \(i \geq \lfloor\frac{t}{2}\rfloor \), then \(C_i(G)\) \((q+1)\)-dominates \(C_{i+q}(G)\), as conjectured by Favaron and Fouquet [4].

John Gimbel 1, Preben D. Vestergaard 2
1Department of Mathematics University of Alaska Fairbanks, Alaska
2Department of Mathematics University of Aalborg Denmark
Abstract:

As a generalization of a matching consisting of edges only, Alavi et al. in [1] define a total matching which may contain both edges and vertices. Using total matchings, [1] defines a parameter \(\beta’_2(G)\) and proves that \(\beta’_2(G) \leq p-1\) holds for a connected graph of order \(p \geq 2\).
Our main result is to improve this inequality to \(\beta’_2(G) \leq p-2\sqrt{p}+{2}\) and we give an example demonstrating this bound to be best possible.
Relations of several other parameters to \(\beta’_2\) are demonstrated.

Topp SIMPSON1
1Department of Mathematics The Pennsylvania State University University Park, Pennsylvania 16802, USA
Abstract:

We examine permutations having a unique fixed point and a unique reflected point; such permutations correspond to permutation matrices having exactly one \(1\) on each of the two main diagonals. The permutations are of two types according to whether or not the fixed point is the same as the reflected point. We also consider permutations having no fixed or reflected points; these have been enumerated using two different methods, and we employ one of these to count permutations with unique fixed and reflected points.

Bing Zhou1
1Department of Mathematics Trent University Peterborough, Ontario Canada K9J 7B8
Abstract:

Let \(G\) be a graph and \(t(G)\) be the number of triangles in \(G\). Define \(\mathcal G_n\) to be the set of all graphs on \(n\) vertices that do not contain a wheel and \(t_n = \max\{t(G) : G \in \mathcal G_n\}\).
T. Gallai conjectured that \(t_n \leq \lfloor\frac{n^2}{8}\rfloor\). In this note we describe a graph on \(n\) vertices that contains no wheel and has at least \(\frac{n^2+n}{8}-3\) triangles.

Kirsten Mackenzie-Fleming1
1 Department of Mathematics Central Michigan University Mount Pleasant MI 48859
Abstract:

A construction is given which uses \(\text{PG}_i(d, q)\) and \(q\) copies of \(\text{AG}_i(d, q)\) to construct designs having the parameters of \(\text{PG}_{i+1}(d+1, q)\), where \(q\) is a prime power and \(i \leq d-1\).

ANTONIO MASCHIETTI1
1Dipartimento di Matematica “G. Castelnuovo”, Universita’ degli Studi “La Sapienza”, 1-00185 Roma
Abstract:

In a previous paper, [6], we associated with every hyperoval of a projective plane of even order a Hadamard \(2\)–design and investigated when this design has lines with three points. We study further this problem using the concept of regular triple and prove the existence of lines with three points in Hadamard designs associated with translation hyperovals. In the general case, the existence of a secant line of regular triples implies that the order of the projective plane is a power of two.

L. Zhu1
1Department of Mathematics Suzhou University Suzhou, 215006 China
Abstract:

An incomplete self-orthogonal latin square of order \(v\) with an empty subarray of order \(n\), an ISOLS(\(v, n\)), can exist only if \(v \geq 3n+1\). It is well known that an ISOLS(\(v, n\)) exists whenever \(v \geq 3n+1\) and \((v,n) \neq (6m+2,2m)\). In this paper we show that an ISOLS(\(6m+2, 2m\)) exists for any \(m \geq 24\).

Andrew Simoson1, Christopher Simoson2
1King College Bristol, TN 37620
2 King College Bristol, TN 37620
Abstract:

Graceful and edge-graceful graph labelings are dual notions of each other in the sense that a graceful labeling of the vertices of a graph \(G\) induces a labeling of its edges, whereas an edge-graceful labeling of the edges of \(G\) induces a labeling of its vertices. In this paper we show a connection between these two notions, namely, that the graceful labeling of paths enables particular trees to be labeled edge-gracefully. Of primary concern in this enterprise are two conjectures: that a path can be labeled gracefully starting at any vertex label, and that all trees of odd order are edge-graceful. We give partial results for the first conjecture and extend the domain of trees known to be edge-graceful for the second conjecture.

Diane Donovan1, Joan Cooper2, D.J. Nott3, Jennifer Seberry4
1 Information Security Research Centre, Faculty of Information Technology Queensland University of Technology Queensland, Australia 4001
2 Department of Information and Communication Technology University of Wollongong Wollongong, Australia 2522
3 Centre for Combinatorics, Mathematics Department The University of Queensland Queensland, Australia 4072
4 Centre for Computer Security Research, Computer Science Department University of Wollongong Wollongong, Australia 2522
Abstract:

In this paper we establish a number of new lower bounds on the size of a critical set in a latin square. In order to do this we first give two results which give critical sets for isotopic latin squares and conjugate latin squares. We then use these results to increase the known lower bound for specific classes of critical sets. Finally, we take a detailed look at a number of latin squares of small order. In some cases, we achieve an exact lower bound for the size of the minimal critical set.

Nejib Zaguia1
1University of Ottawa Computer Science Department 34 George Glinski, Ottawa Ontario, Canada, KIN 6N5
Abstract:

We characterize “effectively” all greedy ordered sets, relative to the jump number problem, which contain no four-cycles. As a consequence, we shall prove that \(O(P) = G(P)\) \quad whenever \(P \text{ greedy ordered set with no four-cycles.}\)

Qiu Weisheng1
1 Institute of Mathematics, Peking University Beijing 100871, People’s Republic of CHINA
Abstract:

This paper sketches the method of studying the Multiplier Conjecture that we presented in [1], and adds one lemma. Applying this method, we obtain some partial solutions for it: in the case \(v = 2n_1\), the Second Multiplier Theorem holds without the assumption ”\(n_1 > \lambda\)”, except for one case that is yet undecided where \(n_1\) is odd and \(7 \mid \mid v\) and \(t \equiv 3, 5,\) or \(6 \pmod{7}\), and for every prime divisor \(p (\neq 7)\) of \(v\) such that the order \(w\) of \(2\) mod \(p\) satisfies \(2|\frac {\phi(p)}{\omega}\); in the case \(n = 3n_1\) and \((v, 3 . 11) = 1\), then the Second Multiplier Theorem holds without the assumption “\(n_1 > \lambda\)” except for one case that is yet undecided where \(n_1\) cannot divide by \(3\) and \(13 \mid \mid v\) and the order of \(t\) mod \(13\) is \(12, 4,\) or \(6,2\), and for every prime divisor \(p (\neq 13)\) of \(v\) such that the order \(w\) of \(3\) mod \(p\) satisfies \(2|\frac {\phi(p)}{\omega}\). These results distinctly improve McFarland’s corresponding results and Turyn’s result.

Vladimir D.Tonchev1
1Department of Mathematical Sciences Michigan Technological University Houghton, Michigan 49931 USA

E-mail Alert

Add your e-mail address to receive upcoming issues of Ars Combinatoria.

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;