Ladislav Stacho1
1Institute for Informatics Slovak Academy of Sciences P.O.Box 56, Dibravskd Cesta 9 840 00 Bratislava 4 Slovak Republic
Abstract:

A graph \(G\) is maximally non-hamiltonian \((MNH)\) if \(G\) is not hamiltonian but becomes hamiltonian after adding an arbitrary new edge. Bondy \([2]\) showed that the smallest size \((=\)number of edges) in a \(MNH\) graph of order \(n\) is at least \(\left\lceil\frac{3n}{2}\right\rceil\) for \(n \geq 7\). The fact that equality may hold for infinitely many \(n\) was suggested by Bollobas [1]. This was confirmed by Clark, Entringer, and Shapiro (see [5,6]) and by Xiaobui, Wenzhou, Chengxue, and Yuanscheng [8] who set the values of the size of smallest \(MNH\) graphs for all small remaining orders \(n\). An interesting question of Clark and Entringer [8] is whether for infinitely many \(n\) the smallest \(MNH\) graph of order \(n\) is not unique. A positive answer – the existence of two non-isomorphic smallest \(MNH\) graphs for infinitely many \(n\) follows from results in \([5], [4], [6]\), and \([8]\). But, there still exist infinitely many orders \(n\) for which only one smallest \(MNH\) graph of order \(n\) is known.

We prove that for all \(n \geq 88\) there are at least \(\tau(n) > 3\) smallest \(MNH\) graphs of order \(n\), where \(\lim_{n\to\infty} \tau(n) = \infty\). Thus, there are only finitely many orders \(n\) for which the smallest \(MNH\) graph is unique.

M. Bada1, I. Hollander1
1 Department of Mathematics Technical University KoSice, Slovakia
Abstract:

We deal with \((a, d)\)-antimagic labelings of the prisms.
A connected graph \(G = (V, E)\) is said to be \((a, d)\)-antimagic if there exist positive integers \(a, d\) and a bijection \(f: E \to \{1, 2, \ldots, |E|\}\) such that the induced mapping \(g_f: V \to {N}\), defined by \(g_f(v) = \sum \{f(u, v): (u, v) \in E(G)\}\), is injective and \(g_f(V) = \{a, a + d, \ldots, a + (|V| – 1)d\}\).

We characterize \((a, d)\)-antimagic prisms with even cycles and we conjecture that prisms with odd cycles of length \(n\), \(n \geq 7\), are \((\frac{n+7}{2}, 4)\)-antimagic.

Bryan L.Shader1
1 Department of Mathematics University of Wyoming Laramie, Wyoming 82071.
Abstract:

We establish some basic facts about sign-patterns of orthogonal matrices, and use these facts to characterize the sign-nonsingular matrices which are sign-patterns of orthogonal matrices.

Liang Zhihe 1
1Department of Mathematics Hebei Education College Shijiazhuang (050091) P.R. China
Abstract:

In this paper, we give some properties of balanced labeling, prove that the graph \((m^2 + 1)C_4\) is balanced, and also solve the balanceness of snakes \(C_m(n)\).

Zhi-Hong Chen1, Hong-Jian Lai2
1 Butler University, Indianapolis, IN 46208
2West Virginia University, Morgantown, WV 26506 ,
Abstract:

In this note, we verify two conjectures of Catlin in [J.Graph Theory \(13 (1989)465-483\)] for graphs with at most \(11\) vertices. These are used to prove the following theorem, which improves prior results in \([10]\) and \([13]\):

Let \(G\) be a 3-edge-connected simple graph with order \(n\). If \(n\) is large and if for every edge \(uv \in E(G)\), \(d(u) + d(v) \geq \frac{n}{6} – 2\), then either \(G\) has a spanning eulerian subgraph or $G$ can be contracted to the Petersen graph.

Margaret B.Cozzens1, Shu-Shih Y.Wu1
1 Department of Mathematics Northeastern University Boston, MA 02115, USA
Abstract:

Let \(G\) be a graph. A vertex subversion strategy of \(G\), \(S\), is a set of vertices in \(G\) whose closed neighborhood is deleted from \(G\). The survival-subgraph is denoted by \(G/S\). The vertex-neighbor-integrity of \(G\), \(VNI(G)\), is defined as:

\(VNI(G) = \min_{|S|} {|S| + w(G/S)}\)

where \(S\) is any vertex subversion strategy of \(G\), and \(w(G/S)\) is the maximum order of the components of \(G/S\). In this paper, we evaluate the vertex-neighbor-integrity of the powers of cycles, and show that among the powers of the \(n\)-cycle, the maximum vertex-neighbor-integrity is \(\left\lceil{2}\sqrt{n}\right\rceil – 3\) and the minimum vertex-neighbor-integrity is \(\left\lceil\frac{n}{2\left\lfloor\frac{n}{2}\right\rfloor} + 1\right\rceil\).

David C.Fisher1, Sarah R.Beel1
1 University of Colorado at Denver, Denver, CO 80217-3864, U.S.A.
Abstract:

What is the 2-packing number of the \(1 \times m \times n\) complete grid graph? Fisher solved this for \(1 \times m \times n\) grids for all \(m\) and \(n\). We answer this for \(2 \times m \times n\) grids for all \(m\) and \(n\), and for \(3 \times 3 \times n\), \(3 \times 4 \times n\), \(3 \times 7 \times n\), \(4 \times 4 \times n\), and \(5 \times 5 \times n\) grids for all \(n\). Partial results are given for other sizes.

Yung C.Chen1, Chin-Mei Fu2
1Tonetex Enterprises Co. LTD. P.O. Box 67-1296, Taipei, Taiwan, Republic of China
2Department of Mathematics, Tamkang University Tamsui, Taipei Shien, Taiwan, Republic of China
Abstract:

A Pandiagonal magic square (PMS) of order \(n\) is a square matrix which is an arrangement of integers \(0, 1, \ldots, n^2-1\) such that the sums of each row, each column, and each extended diagonal are the same. In this paper, we use the Step method to construct a PMS of order \(n\) for each \(n > 3\) and \(n\) is not singly-even. We discuss how to enumerate the number of PMSs of order \(n\) constructed by the Step method, and we get the number of nonequivalent PMSs of order \(8\) with the top left cell \(0\) is \(4,176,000\) and the number of nonequivalent PMSs of order \(9\) with the top left cell \(0\) is \(1,492,992\).

Morimasa TSUCHIYA1,2
1 Department of mathematical Sciences, Tokai University Hiratsuka 259-12, JAPAN
2 Department of Mathematics, MIT Cambridge MA02139, USA
Abstract:

In this paper, we consider total clique covers and uniform intersection numbers on multifamilies. We determine the uniform intersection numbers of graphs in terms of total clique covers. From this result and some properties of intersection graphs on multifamilies, we determine the uniform intersection numbers of some families of graphs. We also deal with the \(NP\)-completeness of uniform intersection numbers.

Biagio Micale1, Mario Pennisi2
1 Department of Mathematics — University of Catania ~ Italy
2 Department of S.A. V.A. — University of Molise ~ Italy
Abstract:

An oriented triple system of order \(v\), denoted OTS\((v)\), is said to be \(d\)-cyclic if it admits an automorphism consisting of a single cycle of length \(d\) and \(v-d\) fixed points, \(d\geq 2\). In this paper, we give necessary and sufficient conditions for the existence of \(d\)-cyclic OTS\((v)\). We solve the analogous problem for directed triple systems.

Lane Clark1
1Department of Mathematics Southern Illinois University at Carbondale Carbondale, IL 62901
Abstract:

Let \(A_m(n, k)\) denote the number of permutations of \(\{1, \ldots, n\}\) with exactly \(k\) rises of size at least \(m\). We show that, for each positive integer \(m\), the \(A_m(n, k)\) are asymptotically normal.

Jianping Li1,2
1Institute of Math. and Departinent of Math.. Yunnan University Kunming 650091, Yunnan, P.R.China.
2L.R.L. URA 410 du CNRS. Bat.490, Université de Paris-Sud. 91405-Orsay, France.
Abstract:

Let \(G\) be a graph of order \(n\) and \( X\) a given vertex subset of \(G\). Define the parameters:
\(\alpha(V) = \max\{|S| \mid S \text{ is an independent set of vertices of the subgraph } G(X) \text{ in } G \text{ induced by } X\}\)
and
\(\sigma_k(X) = \min\{|\Sigma_{i=1}^{k}d(x_i)| \mid \{x_1,x_2,\ldots,x_k\} \text{ is an independent vertex set in } G[X]\}\)
A cycle \(C\) of \(G\) is called \(X\)-longest if no cycle of \(G\) contains more vertices of \(X\) than \(C\). A cycle \(C’\) of \(G\) is called \(X\)-dominating if all neighbors of each vertex of \(X\setminus V(C)\) are on \(C\). In particular, \(G\) is \(X\)-eyclable if \(G\) has an \(X\)-cycle, i.e., a cycle containing all vertices of \(X\). Our main result is as follows:
If \(G\) is \(1\)-tough and \(\sigma_3(X) \geq n\), then \(G\) has an \(X\)-longest cycle \(C\) such that \(C\) is an \(X\)-dominating cycle and \(|V(C) \cap X| \geq \min\{|X|. |X| + \frac{1}{3}\sigma_3(X) – \sigma(X)\}\), which extends the well-known results of D. Bauer et al. [2] in terms of \(X\)-cyclability. Finally, if \(G\) is \(2\)-tough and \(\sigma_3(X) \geq n\), then \(G\) is \(X\)-cyelable.

Brenton D.Gray1, Colin Ramsay2
1Centre for Combinatorics, Depts. of Computer Science The University of Queensland. nd.
2 Dept. of Mathematics, and of Mathematics,The University of Queensla
Abstract:

In 1992, Mahmoodian and Soltankhah conjectured that, for all \(0 \leq i \leq t\), a \((v, k, t)\) trade of volume \(2^{t+1} – 2^{t-i}\) exists. In this paper we prove this conjecture and, as a corollary, show that if \(s \geq (2t – 1)2^t\) then there exists a \((v, k, t)\) trade of volume \(s\).

Hendrik Van Maldeghem1
1 University of Ghent Department of Pure Mathematics and Computer Algebra Galglaan 2, 9000 Gent Belgium
Abstract:

We prove two new characterization theorems for finite Moufang polygons, one purely combinatorial, another group-theoretical. Both follow from a result of Andries Brouwer on the connectedness of the geometry opposite a flag in a finite generalized polygon.

C. Roos1, A. Snijders1, A.J.van Zanten1
1 Delft University of Technology Faculty of Technical Mathematics and Informatics Mekelweg 4 2628 CD Delft The Netherlands
Abstract:

Cyclonomial coefficients are defined as a generalization of binomial coefficients. It is proved that each natural number can be expressed, in a unique way, as the sum of cyclonomial coefficients, satisfying certain conditions. This cyclonomial number system generalizes the well-known binomial number system. It appears that this system is the appropriate number system to index the words of the lexicographically ordered code \(L^q(n, k)\). This code consists of all words of length \(n\) over an alphabet of \(q\) symbols, such that the sum of the digits is constant. It provides efficient algorithms for the conversion of such a codeword to its index, and vice versa.

A.V. Gagarin 1, LE. Zverovich1
1 Department of Mechanics and Mathematics Belarus State University Minsk 220050 Republic of Belarus
Abstract:

We investigate the connections between families of graphs closed under (induced) subgraphs and their forbidden (induced) subgraph characterizations. In particular, we discuss going from a forbidden subgraph characterization of a family \(\mathbb{P}\) to a forbidden induced subgraph characterization of the family of line graphs of members of \(\mathbb{P}\) in the most general case. The inverse problem is considered too.

T.Aaron Gulliver1, Vijay K.Bhargava2
1Department of Electrical and Electronic Engineering, University of Canterbury, Christchurch, New Zealand,
2 Department of Electrical and Computer Engineering, University of Victoria, P.O. Box 3055, MS 8610, Victoria, B.C., Canada V8W 3P6,
Abstract:

A family of double circulant quasi-cyclic codes is constructed from the incidence matrices of difference sets associated with hyperplanes in projective space. A subset of these codes leads to a class of doubly-even self-orthogonal codes, and two classes of self-dual codes.

Stoyan Kapralov1, Svetlana Topalova2
1 Department of Mathematics, Technical University, Gabrovo, Bulgaria
2Institute of Mathematics, Bulgarian Academy of Sciences, Bulgaria
Abstract:

All nonisomorphic \(2\)-\((21, 6, 3)\) designs with automorphisms of order \(7\) or \(5\) were found, and the orders of their groups of automorphisms were determined. There are \(33\) nonisomorphic \(2\)-\((21, 6, 3)\) designs with automorphisms of order \(7\) and \(203\) with automorphisms of order \(5\).

Guizhen Liu1, Qinglin Yu2,3
1 Department of Mathematics Shandong University Jinan, Shandong P.R. China
2 Department of Mathematics University College of The Caribou Kamloops, BC, Canada
3Department of Mathematics and Statistics Simon Fraser University Burnaby, BC, Canada
Abstract:

Let \(G\) be a graph with even order \(p\) and let \(k\) be a positive integer with \(p \geq 2k + 2\). It is proved that if the toughness of \(G\) is at least \(k\), then the subgraph of \(G\) obtained by deleting any \(2k – 1\) edges or \(k\) vertices has a perfect matching. Furthermore, we show that the results in this paper are best possible.

L. Haddad1, P. Hell2, E. Mendelsohn3
1DEPARTEMENT DE MATHEMATIQUES ET INFORMATIQUE, COLLEGE MILITAIRE ROYAL pu CaNnaDA, Kinaston, ON, K7TK 5L0
2SCHOOL oF ComPUTING ScieNncEs, S.P.U. Burnaby, B.C., V5A 156
3DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TORONTO, TORONTO, ON, M1C 1A4
Abstract:

The following problem, known as the Strong Coloring Problem for the group \(G\) (SCP\(_G\)) is investigated for various permutation groups \(G\). Let \(G\) be a subgroup of \(S_h\), the symmetric group on \(\{0, \ldots, h-1\}\). An instance of SCP\(_G\) is an \(h\)-ary areflexive relation \(\rho\) whose group of symmetry is \(G\) and the question is “does \(\rho\) have a strong \(h\)-coloring”? Let \(m \geq 3\) and \(D_m\) be the Dihedral group of order \(m\). We show that SCP\(_{D_m}\) is polynomial for \(m = 4\), and NP-complete otherwise. We also show that the Strong Coloring Problem for the wreath product of \(H\) and \(K\) is in \( {P}\) whenever both SCP\(_H\) and SCP\(_K\) are in \( {P}\). This, together with the algorithm for \(D_4\) yields an infinite new class of polynomially solvable cases of SCP\(_G\).

Lorenz Halbeisen1, Norbert Hungerbiihler2
1 Mathematik Departement ETH Zentrum HG G33.5 CH-8092 Ziirich (Switzerland)
2 Mathematisches Institut Universitat Freiburg Rheinstr. 10 D-79104 Freiburg (Germany)
Abstract:

We deal with the concept of packings in graphs, which may be regarded as a generalization of the theory of graph design. In particular, we construct a vertex- and edge-disjoint packing of \(K_n\) (where \(\frac{n}{2} \mod 4\) equals 0 or 1) with edges of different cyclic length. Moreover, we consider edge-disjoint packings in complete graphs with uniform linear forests (and the resulting packings have special additional properties). Further, we give a relationship between finite geometries and certain packings which suggests interesting questions.

Jiping Liu1, Huishan Zhou 2
1 Department of Mathematics and Statistics Simon Fraser University Burnaby, B.C., Canada
2Department of Mathematics and Computer Science Georgia State University Atlanta, Georgia 30303-3083, USA
Abstract:

A homomorphism from a graph to another graph is an edge preserving vertex mapping. A homomorphism naturally induces an edge mapping of the two graphs. If, for each edge in the image graph, its preimages have \(k\) elements, then we have an edge \(k\)-to-\(1\) homomorphism. We characterize the connected graphs which admit edge \(2\)-to-\(1\) homomorphism to a path, or to a cycle. A special case of edge \(k\)-to-\(1\) homomorphism — \(k\)-wrapped quasicovering — is also considered.

Wen Song Lin1, Zeng Min Song1
1 Department of Mathematics Southeast University Nanjing, 210096 P.R. China
Abstract:

Let \(G\) be a \(2\)-connected simple graph with order \(n\) (\(n \geq 5\)) and minimum degree 6. This paper proves that if \(|N(u) \cup N(v)| \geq n – \delta + 2\) for any two nonadjacent vertices \(u, v \in V(G)\), then \(G\) is edge-pancyclic, with a few exceptions. Under the same condition, we prove that if \(u, v \in V(G)\) and \(\{u, v\}\) is not a cut set and \(N(u) \cap N(v) \neq \phi\) when \(uv \in E(G)\), then there exist \(u\)–\(v\) paths of length from \(d(u, v)\) to \(n – 1\).

Jaromir Abrham1, Jean M.Turgeon2
1Department of Industrial Engineering University of Toronto Toronto, Ontario Canada M5S 1A4
2 Dép. de mathématiques et de statistique Université de Montréal Case postale 6128, Succursale Centre-ville Montréal, Québec Canada H3C 337
Abstract:

The purpose of this paper is to extend the well-known concepts of additive permutations and bases of additive permutations to the case when repeated elements are permitted; that means that the basis (an ordered set) can become an ordered multiset. Certain special cases are studied in detail and all bases with repeated elements up to cardinality six are enumerated, together with their additive permutations.

Bruce E.Sagan1
1 Department of Mathematics Michigan State University East Lansing, MI 48824-1027
Abstract:

We show how lattice paths and the reflection principle can be used to give easy proofs of unimodality results. In particular, we give a “one-line” combinatorial proof of the unimodality of the binomial coefficients. Other examples include products of binomial coefficients, polynomials related to the Legendre polynomials, and a result connected to a conjecture of Simion.

GS. Yovanof1, S.W. Golomb2
1Hewlett-Packard Laboratories Palo Alto, CA 94304
2 Department of Electrical Engineering University of Southern California Los Angeles, CA 90089-0272
Abstract:

The search for homometric structures, i.e., non-congruent structures sharing the same autocorrelation function, is shown to be of a combinatorial nature and can be studied using purely algebraic techniques. Several results on the existence of certain homometric structures which contradict a theorem by S. Piccard are proved based on a polynomial representation model and the factorization of polynomials over the rationals. Combinatorial arguments show that certain factorizations do not lead to counterexamples to S. Piccard’s theorem.

Johannes H.Hattingh1, Elna Ungerer1, Michael A.Henning2
1 Department of Mathematics Rand Afrikaans University Auckland Park, South Africa
2Department of Mathematics University of Natal Pietermaritzburg, South Africa
Abstract:

Let \(G = (V, E)\) be a graph. For any real valued function \(f: V \to \mathbb{R}\) and \(S \subseteq V\), let \(f(S) = \sum_{u \in S} f(u)\). Let \(c, d\) be positive integers such that \(\gcd(c, d) = 1\) and \(0 < \frac{c}{d} \leq 1\). A \(\frac{c}{d}\)-dominating function \(f\) is a function \(f: V \to \{-1, 1\}\) such that \(f[v] \geq 1\) for at least \(\frac{c}{d}\) of the vertices \(v \in V\). The \(\frac{c}{d}\)-domination number of \(G\), denoted by \(\gamma_{\frac{c}{d}}(G)\), is defined as \(\min\{f(V) | f\) is a \(\frac{c}{d}\)-dominating function on \(G\}\). We determine a sharp lower bound on \(\gamma_{\frac{c}{d}}(G)\) for regular graphs \(G\), determine the value of \(\gamma_{\frac{c}{d}}(G)\) for an arbitrary cycle \(C_n\), and show that the decision problem PARTIAL SIGNED DOMINATING FUNCTION is \(NP\)-complete.

Wilfried Imrich1, Sandi Klavzar2, Aleksander Vesel2
1 Department of Mathematics and Applied Geometry Montanuniversitat Leoben A-8700 Leoben, Austria
2Department of Mathematics, PEF University of Maribor Koroska cesta 160 62000 Maribor, Slovenia
Abstract:

The vertex set of a halved cube \(Q’_d\) consists of a bipartition vertex set of a cube \(Q_d\) and two vertices are adjacent if they have a common neighbour in the cube. Let \(d \geq 5\). Then it is proved that \(Q’_d\) is the only connected, \(\binom{d}{3}\)-regular graph on \(2^d\) vertices in which every edge lies in two \(d\)-cliques and two \(d\)-cliques do not intersect in a vertex.

Ehler Lange1, Heinz-Otto Peitgen1, Guentcho Skordev1
1 Center for Complex Systems and Visualisation University of Bremen Postfach 330 440 28334 Bremen Germany
Abstract:

Geometrical representations of certain classical number tables modulo a given prime power (binomials, Gaussian \(g\)-binomials and Stirling numbers of \(1st\) and \(2nd\) kind) generate patterns with self-similarity features. Moreover, these patterns appear to be strongly related for all number tables under consideration, when a prime power is fixed.

These experimental observations are made precise by interpreting the recursively defined number tables as the output of certain cellular automata \((CA)\). For a broad class of \(CA\) it has been proven \([11]\) that the long time evolution can generate fractal sets, whose properties can be understood by means of hierarchical iterated function systems. We use these results to show that the mentioned number tables (mod \(p^v\)) induce fractal sets which are homeomorphic to a universal fractal set denoted by \(\mathcal{S}_{p^v}\) which we call Sierpinski triangle (mod \(p^v\)).

E-mail Alert

Add your e-mail address to receive upcoming issues of Ars Combinatoria.

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;