Wayne Goddard1, Ortrud R. Oellermann2, Henda C. Swart2
1Massachusetts Institute of Technology USS.A.
2University of Natal Durban 4001 SOUTH AFRICA
Abstract:

Let \(k\) and \(\ell\) be nonnegative integers, not both zero, and \(D \subseteq {N} – \{1\}\). A (connected) graph \(G\) is defined to be \((k, \ell, D)\)-stable if for every pair \(u, v\) of vertices of \(G\) with \(d_G(u, v) \in D\) and every set \(S\) consisting of at most \(k\) vertices of \(V(G) – \{u, v\}\) and at most \(\ell\) edges of \(E(G)\), the distance between \(u\) and \(v\) in \(G – S\) equals \(d_G(u, v)\). For a positive integer \(m\), let \({N}_{\geq m} = \{x \in {N} \mid x \geq m\}\). It is shown that a graph is \((k, \ell, \{m\})\)-stable if and only if it is \((k, \ell, {N}_{\geq m})\)-stable. Further, it is established that for every positive integer \(x\), a graph is \((k + x, \ell, \{2\})\)-stable if and only if it is \((k, \ell+x, \{2\})\)-stable. A generalization of \((k, \ell, \{m\})\)-stable graphs is considered. For a planar \((k, 0, \{m\})\)-stable graph, \(m \geq 3\), a sharp bound for \(k\) in terms of \(m\) is derived.

David K. Garnick1, Jeffrey H. Dinitz2
1Department of Computer Science Bowdoin College, Brunswick, ME USA 04011
2Department of Mathematics University of Vermont, Burlington, VT USA 05405
Abstract:

Given a graph \(G\) with weighting \(w: E(G) \to Z^+\), the strength of \(G(w)\) is the maximum weight on any edge. The sum of a vertex in \(G(w)\) is the sum of the weights of all its incident edges. \(G(w)\) is \({irregular}\) if the vertex sums are distinct. The \({irregularity \; strength}\) of a graph is the minimum strength of the graph under all irregular weightings. We present fast heuristic algorithms, based on hill-climbing and simulated annealing, for finding irregular weightings of a given strength. The heuristics are compared empirically, and the algorithms are then used to formulate a conjecture.

W. D. Wallis1, Guo-Hui Zhang1
1Department of Mathematics Southern Illinois University Carbondale, IL 62901-4408
Abstract:

A graph \(G\) is said to be maximal clique irreducible if each maximal clique in \(G\) contains an edge which is not contained in any other maximal clique of \(G\). In 1981, Opsut and Roberts proved that any interval graph is maximal clique irreducible. In this paper, we generalize their result and consider the question of characterizing maximal clique irreducible graphs.

F. E. Bennett1, L. Zhu2
1Department of Mathematics Mount Saint Vincent University Halifax, Nova Scotia Canada B3M 2]6
2Department of Mathematics Suzhou University Suzhou 215006 People’s Republic of China
Abstract:

It is shown that the obvious necessary condition \(\lambda h(h – 1)m^2 \equiv 0 \pmod{k}\) for the existence of a \((v, k, \lambda)\)-perfect Mendelsohn design with \(h\) holes of size \(m\) is sufficient in the case of block size three, except for a nonexisting \((6, 3, 1)\)-PMD.

Terry A. McKee1
1Department.of Mathematics & Statistics Wright State University Dayton, Ohio 45435 US.A.
Abstract:

We introduce neighborhood intersection graphs and multigraphs of loop-graphs to generalize the standard notions of square and distance-two graphs. These neighborhood (multi)graphs are then used to construct self-dual graphs and multigraphs (embedded on surfaces of varying genus) which have involutory vertex-face mappings.

R. Craigen1
1 Department of Pure Mathematics University of Waterloo Ontario, N2L 3G1 CANADA
Abstract:

As stated in \([2]\), there is a conjecture that the determinant function maps the set of \(n \times n\) \((0, 1)\)-matrices onto a set of consecutive integers for any given \(n\). While this is true for \(n \leq 6\), it is shown to be false for \(n = 7\). In particular, there is no \(7 \times 7\) determinant in the range \(28 – 31\), but there is one equal to \(32\). Then the more general question of the range of the determinant function for all \(n\) is discussed. A lower bound is given on the largest string of consecutive integers centered at \(0\), each of which is a determinant of an \(n \times n\) \((0, 1)\)-matrix.

C. C. Lindner1, D. R, Stinson2
1Department of Algebra, Combinatorics and Analysis Auburn University, Auburn AL 36849
2Computer Science and Engineering University of Nebraska, Lincoln NE 68588
Abstract:

In this paper, we prove that for any even integer \(m \geq 4\), there exists a nested \(m\)-cycle system of order \(n\) if and only if \(n \equiv 1 \mod{2m}\), with at most \(13\) possible exceptions (for each value of \(m\)). The proof depends on the existence of certain group-divisible designs that are of independent interest. We show that there is a group-divisible design having block sizes from the set \(\{5, 9, 13, 17, 29, 49\}\), and having \(u\) groups of size \(4\), for all \(u \geq 5\), \(u \neq 7, 8, 12, 14, 18, 19, 23, 24, 33, 34\).

Stanislaw P. Radziszowski1
1Department of Computer Science Rochester Institute of Technology Rochester, New York 14623
Abstract:

We give a general construction of a triangle-free graph on \(4p\) points whose complement does not contain \(K_{p+2} – e\) for \(p \geq 4\). This implies that the Ramsey number \(R(K_3, K_k – e) \geq 4k – 7\) for \(k \geq 6\). We also present a cyclic triangle-free graph on \(30\) points whose complement does not contain \(K_9 – e\). The first construction gives lower bounds equal to the exact values of the corresponding Ramsey numbers for \(k = 6, 7,\) and \(8\). The upper bounds are obtained by using computer algorithms. In particular, we obtain two new values of Ramsey numbers \(R(K_3, K_8 – e) = 25\) and \(R(K_3, K_9 – e) = 31\), the bounds \(36 \leq R(K_3, K_{10} – e) \leq 39\), and the uniqueness of extremal graphs for Ramsey numbers \(R(K_3, K_6 – e)\) and \(R(K_3, K_7 – e)\).

W. C. Chu1
1Institute of Systems Science Academia Sinica, Peking 100080 People’s Republic of CHINA
Abstract:

The concept of ladder tableaux is introduced, which may be considered as a natural extension of the shifted tableaux. By means of the dominance technique, a pair of determinantal expressions in terms of symmetric functions, for the generating function of ladder tableaux with a fixed shape, is established. As applications, the particular cases yield the generating functions for column-strict reverse plane partitions, symmetrical reverse plane partitions, and column-strict shifted reverse plane partitions with a given shape and with no part-restrictions.

David R. Guichard1, John D. Massman1
1Whitman College Walla Walla, WA 99362
Abstract:

Gyárfás and Lehel conjectured that any collection of trees \(T_2, T_3, \ldots, T_n\) on \(2, 3, \ldots, n\) vertices respectively, can be packed into the complete graph on \(n\) vertices. Fishburn proved that the conjecture is true for some classes of trees and for all trees up to \(n = 9\). Pritikin characterized the trees for which Fishburn’s proof works and extended the classes of trees for which the conjecture is known to be true. Using a computer, we have shown that the conjecture is true through \(n = 11\), but also that an approach suggested by Fishburn is unlikely to work in general.

EJ Cockayne1, CM Mynhardt2
1University of Victoria, Victoria, B.C., Canada
2University of South Africa, Pretoria, South Africa
Abstract:

The \({domination \; number}\) \(\gamma(G)\) of a graph \(G = (V, E)\) is the smallest cardinality of a \({dominating}\) set \(X\) of \(G\), i.e., of a subset \(X\) of vertices such that each \(v \in V – X\) is adjacent to at least one vertex of \(X\). The \(k\)-\({minimal \; domination \; number}\) \(\Gamma_k(G)\) is the largest cardinality of a dominating set \(Y\) which has the following additional property: For every \(\ell\)-subset \(Z\) of \(Y\) where \(\ell \leq k\), and each \((\ell-1)\)-subset \(W\) of \(V – Y\), the set \((Y – Z) \cup W\) is not dominating. In this paper, for any positive integer \(k \geq 2\), we exhibit self-complementary graphs \(G\) with \(\gamma(G) > k\) and use this and a method of Graham and Spencer to construct \(n\)-vertex graphs \(F\) for which \(\Gamma_k(F)\Gamma_k(\overline{F})>n\).

Shen Hao1
1Department of Applied Mathematics Shanghai Jiao Tong University
Abstract:

In this paper, simple \(2-(9,4,\lambda)\) designs are constructed for \(\lambda = 3q\), \(1 \leq q \leq 7\), and indecomposable simple \(2-(v,k,\lambda)\) designs are constructed for all \(10 \leq v \leq 16\) and the smallest possible \(\lambda\) for which the existence of simple \(2-(v,k,\lambda)\) designs was previously undecided.

Gaetano Quattrocchi1
1Dipartimento di Matematica Universita di Catania Viale A. Doria 6 95125 Catania ITALY
Abstract:

We prove that for every \(v \equiv 4, 8 \pmod{12}\) with \(v \geq 16\), there exists a pair of \(S(3,4,v)\)s having exactly \(k \in \{0, 1, \ldots, \lfloor \frac{v}{4} \rfloor \}\) pairwise disjoint blocks in common.

Bruce M. Landman1, Raymond N. Greenwell2
1Department of Mathematics University of North Carolina at Greensboro Greensboro, NC 27412
2Department of Mathematics Hofstra University Hempstead, NY 11550 USS.A.
Abstract:

Numbers similar to those of van der Waerden are examined by considering sequences of positive integers \(\{x_1, x_2, \ldots, x_n\}\) with \(x_{i+1} = x_i + d + r_i\), where \(d \in {Z}^+\) and \(0 \leq r_i \leq \max(0, f(i))\) for a given function \(f\) defined on \({Z}^+\). Let \(w_f(n)\) denote the least positive integer such that if \(\{1, 2, \ldots, w_f(n)\}\) is \(2\)-colored, then there exists a monochromatic sequence of the type just described. Tables are given of \(w_f(n)\) where \(f(i) = i – k\) for various constants \(k\), and also where \(f(i) = i\) if \(i \geq 2\), \(f(1) = 0\). In this latter case, as well as for \(f(i) = i \), an upper bound is given that is very close to the actual values. A tight lower bound and fairly reasonable upper bound are given in the case \(f(i) = i – 1\).

E. J. Farrell1, S. A. Wahid1
1Department of Mathematics The University of the West Indies St. Augustine, Trinidad WEST INDIES
Abstract:

It is also shown that for a certain family of graphs (called thistles), the coefficients of the matching polynomial repeat themselves symmetrically. This turns out to be a characterizing property for some thistles.

E. J. Farrell1, Earl Glen Whitehead, Jr.2
1Department of Mathematics The University of the West Indies St. Augustine, Trinidad
2Department of Mathematics and Statistics University of Pittsburgh Pittsburgh, PA 15260 U.S.A,
Abstract:

It is shown that the basis graphs of every family of circulants are characterized by their matching polynomials. Explicit formulas are also given for their matching polynomials. From these results, the analogous formulas for the chromatic polynomials of the complements of the basis graphs, are obtained. It is shown that a basis graph of a family of circulants is chromatically unique if and only if it is connected. Also, some interesting results of a computer investigation are discussed and conjectures are made.

F. Franek1, R. Mathon2, R.C. Mullin3, A. Rosa4
1Department of Computer Science and Systems McMaster University Hamilton, Ontario, Canada L8S 4K1
2Department of Computer Science University of Toronto Toronto, Ontario, Canada M5S 1A4
3Department of Combinatorics and Optimization University of Waterloo Waterloo, Ontario, Canada N2L 3G1
4Department of Mathematics and Statistics McMaster University Hamilton, Ontario, Canada L8S 4K1
Hesham H. Ali1, Naveed A. Sherwani Alfred Boals2
1Department of Mathematics and Computer Science University of Nebraska at Omaha Omaha, NE 68182
2Department of Computer Science Western Michigan University Kalamazoo, MI 49008 ULS.A.
Abstract:

In this paper, we introduce the concept of similar graphs. Similar graphs arise in the design of fault-tolerant networks and in load balancing of the networks in case of node failures. Similar graphs model networks that not only remain connected but also allow a job to be shifted to other processors without re-executing the entire job. This dynamic load balancing capability ensures minimal interruption to the network in case of single or multiple node failures and increases overall efficiency. We define a graph to be \((m, n)\)-similar if each vertex is contained in a set of at least \(m\) vertices, each pair of which share at least \(n\) neighbors. Several well-known classes of \((2, 2)\)-similar graphs are characterized, for example, triangulated, comparability, and co-comparability. The problem of finding a minimum augmentation to obtain a \((2, 2)\)-similar graph is shown to be NP-Complete. A graph is called strongly \(m\)-similar if each vertex is contained in a set of at least \(m\) vertices with the property that they all share the same neighbors. The class of strongly \(m\)-similar graphs is completely characterized.

Cantian Lin1
1Department of Mathematics Southern Illinois University Carbondale, IL 62901-4408
Hung-Lin Fu1, Kuo-Ching Huang1, Chin-Lin Shue1
1Department of Applied Mathematics National Chiao Tung University Hsin-Chu, Taiwan REPUBLIC OF CHINA
Abstract:

A star \(S_q\), with \(q\) edges, is a complete bipartite graph \(K_{1,q}\). Two figures of the complete graph \(K_n\) on a given set of \(k\) vertices are compatible if they are edge-disjoint, and a configuration is a set of pairwise compatible figures. In this paper, we take stars as our figures. A configuration \(C\) is said to be maximal if there is no figure (star) \(f \notin C\) such that \(\{f\} \cup C\) is also a configuration. The size of a configuration \(F\), denoted by \(|F|\), is the number of its figures. Let \(\text{Spec}(n, q)\) (or simply \(\text{Spec}(n)\)) denote the set of all sizes such that there exists a maximal configuration of stars with this size. In this paper, we completely determine \(\text{Spec}(n)\), the spectrum of maximal configurations of stars. As a special case, when \(n\) is an order of a star system, we obtain the spectrum of maximal partial star systems.

Bruce Landman1,2, Frederick Portier2,1, Theresa Vaughan1,2
1Department of Mathematics University of North Carolina at Greensboro Greensboro, NC 27412
2Department of Mathematics and Computer Science Mount Saint Mary’s College Emmitsburg, MD 21727
Shen Hao1
1Department of Applied Mathematics Shanghai Jiao Tong University Shanghai 200030 PEOPLE’S REPUBLIC OF CHINA
Abstract:

It is proved in this paper that for \(\lambda = 4\) and \(5\), the necessary conditions for the existence of a simple \(B(4, \lambda; v)\) are also sufficient. It is also proved that for \(\lambda = 4\) and \(5\), the necessary conditions for the existence of an indecomposable simple \(B(4, \lambda; v)\) are also sufficient, with the unique exception \((v, \lambda) = (7, 4)\) and \(10\) possible exceptions.

Dieter Rasch1,2
1Research Centre of Animal Production Dummerstorf-Rostock of the Academy of Agricultural Sciences of the GDR
2McMaster University Department of Mathematics and Statistics Hamilton, Ontario CANADA
D. de Caen1, D. L. Kreher2, J. A. Wiseman3
1Department of Mathematics Queens University Kingston, Ontario K7L 3N6 CANADA
2Department of Mathematics University of Wyoming Laramie, Wyoming 82071 ULS.A.
3Department of Mathematics Rochester Institute of Technology Rochester, New York 14623 ULS.A.
Abstract:

Let \(S\) and \(T\) be sets with \(|S| = m\) and \(|T| = n\). Let \(S_3, S_2\) and \(T_3, T_2\) be the sets of all \(3\)-subsets (\(2\)-subsets) of \(S\) and \(T\), respectively. Define \(Q((m, 2, 3), (n, 2, 3))\) as the smallest subset of \(S_2 \times T_2\) needed to cover all elements of \(S_3 \times T_3\). A more general version of this problem is initially defined, but the bulk of the investigation is devoted to studying this number. Its property as a lower bound for a planar crossing number is the reason for this focus.

Alexander Pott1
1Department of.Mathematics and Statistics Wright State University Dayton, Ohio 45435 USA
Abstract:

Under some assumptions on the incidence matrices of symmetric designs, we prove a non-existence theorem for symmetric designs. The approach generalizes Wilbrink’s result on difference sets \([7]\).

DV. Chopra1
1Wichita State University Wichita, Kansas 67208 U.S.A.
Abstract:

In this paper, we derive some inequalities which the parameters of a two-symbol balanced array \(T\) (\(B\)-array) of strength four must satisfy for \(T\) to exist.

K. J. Danhof1, N.C. K. Phillips1, W. D. Wallis1
1Department of Computer Science Southern Illinois University
Abstract:

This paper considers Latin squares of order \(n\) having \(0, 1, \ldots, n-1\) down the main diagonal and in which the back diagonal is a permutation of these symbols (diagonal squares). It is an open question whether or not such a square which is self-orthogonal (i.e., orthogonal to its transpose) exists for order \(10\). We consider two possible constraints on the general concept: self-conjugate squares and strongly symmetric squares. We show that relative to each of these constraints, a corresponding self-orthogonal diagonal Latin square of order \(10\) does not exist. However, it is easy to construct self-orthogonal diagonal Latin squares of orders \(8\) and \(12\) which satisfy each of the constraints respectively.

E-mail Alert

Add your e-mail address to receive upcoming issues of Journal of Combinatorial Mathematics and Combinatorial Computing (JCMCC).

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;