Iliya Bluskov1
1Department of Mathematics and Statistics Simon Fraser University Burnaby, B.C. CANADA, V5A 186
Abstract:

In this paper, we prove the existence of \(22\) new \(3\)-designs on \(26\) and \(28\) points. The base of the constructions are two designs with a small maximum size of the intersection of any two blocks.

Chang Yanxun1, Ge Gennian2
1Department of Mathematics Northern Jiaotong University Beijing, 100044 P.R. China
2Department of Mathematics Suzhou University Suzhou, 215006 P.R. China
Abstract:

A large set of KTS(\(v\)), denoted by LKTS(\(v\)), is a collection of (\(v-2\)) pairwise disjoint KTS(\(v\)) on the same set. In this article, some new LKTS(\(v\)) is constructed.

M. Mahdian1, E.S. Mahmoodian1
1Department of Computer Engineering Department of Mathematical Science Sharif University of Technology Tehran, Iran
Abstract:

Let \(G\) be a graph with \(v\) vertices. If there exists a list of colors \(S_1, S_2, \ldots, S_v\) on its vertices, each of size \(k\), such that there exists a unique proper coloring for \(G\) from this list of colors, then \(G\) is called a uniquely \(k\)-list colorable graph. We prove that a connected graph is uniquely \(2\)-list colorable if and only if at least one of its blocks is not a cycle, a complete graph, or a complete bipartite graph. For each \(k\), a uniquely \(k\)-list colorable graph is introduced.

T. Gangopadhyay1
1XLRI Jamshedpur Post Box 222 Jamshedpur 831 001 India
Abstract:

A supergraph \(H\) of a graph \(G\) is called tree-covered if \(H – E(G)\) consists of exactly \(|V(G)|\) vertex-disjoint trees, with each tree having exactly one point in common with \(G\). In this paper, we show that if a graph \(G\) can be packed in its complement and if \(H\) is a tree-covered supergraph of \(G\), then \(G\) itself is self-packing unless \(H\) happens to be a member of a specified class of graphs. This is a generalization of earlier results that almost all trees and unicyclic graphs can be packed in their complements.

Bu Yue Hua1, Zhang Ke Min2
1Department of Mathematics Zhejiang Normal University Jinhua 321004 China
2Department of Mathematics Nanjing University Nanjing 210008 China
Abstract:

Let \(T = (V,A)\) be an oriented graph with \(n\) vertices. \(T\) is completely strong path-connected if for each arc \((a,b) \in A\) and \(k\) (\(k = 2, \ldots, n-1\)), there is a path from \(b\) to \(a\) of length \(k\) (denoted by \(P_k(a,b)\)) and a path from \(a\) to \(b\) of length \(k\) (denoted by \(P’_k(a,b)\)) in \(T\). In this paper, we prove that a connected local tournament \(T\) is completely strong path-connected if and only if for each arc \((a,b) \in A\), there exist \(P_2(a,b)\) and \(P’ _2(a,b)\) in \(T\), and \(T\) is not of \(T_1 \ncong T_0\)-\(D’_8\)-type digraph and \(D_8\).

John L. Goldwasser1, Cun-Quan Zhang1
1Department of Mathematics West Virginia University Morgantown, West Virginia 26506-6310
Abstract:

It was proved by Ellingham \((1984)\) that every permutation graph either contains a subdivision of the Petersen graph or is edge-\(3\)-colorable. This theorem is an important partial result of Tutte’s Edge-\(3\)-Coloring Conjecture and is also very useful in the study of the Cycle Double Cover Conjecture. The main result in this paper is that every permutation graph contains either a subdivision of the Petersen graph or two \(4\)-circuits and therefore provides an alternative proof of the theorem of Ellingham. A corollary of the main result in this paper is that every uniquely edge-\(3\)-colorable permutation graph of order at least eight must contain a subdivision of the Petersen graph.

Bolian Liu1
1Department of Mathematics South China Normal University Guangzhou P.R. of China
Abstract:

In this paper, the \(k\)-exponent and the \(k\)th upper multiexponent of primitive nearly reducible matrices are obtained and a bound on the \(k\)th lower multiexponent of this kind of matrices is given.

Klaus Metsch1, Bridget S. Webb2
1 Mathematisches Institut Arndtstrasse 2 D-35392 Giessen
2Department of Pure Mathematics The Open University, Walton Hall Milton Keynes, MK7 6AA
G.B. Khosrovshahi1, R. Torabi1
1Institute for Studies in Theoretical Physics and Mathematics (IPM), and The University of Tehran, Iran.
Abstract:

We call a simple \(t-(v,k)\) trade with maximum volume a maximal trade. In this paper, except for \(v = 6m+5\), \(m \geq 3\), maximal \(2-(v, 3)\) trades for all \(v\)’s are determined. In the latter case a bound for the volume of these trades is given.

G.Ram Kherwa, Jagdish Prasad1, Bhagwandas
1 L6H, University Campus, University of Rajasthan, Jaipur-302004 INDIA.
Abstract:

Balanced ternary and generalized balanced ternary designs are constructed from any \((v, b, r, k)\) designs. These results generalise the earlier results of Diane Donovan ( 1985 ).

E-mail Alert

Add your e-mail address to receive upcoming issues of Ars Combinatoria.

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;