Guoping Wang1,2, Qiongxiang Huang3, Jing Cai1
1Department of Mathematics, Xinjiang Normal University, Urumai, Xinjiang 830000, P.R.China
2Department of Mathematics, Jiangsu Teachers University of Technology, Changzhou, Jiangsu 213001, P.R.China
3The College of Mathematics and Systems Sciences, Xinjiang University, Urumqi, Xinjiang 830046, P.R.China
Abstract:

We study the spectral radius of graphs with \(n\) vertices and a \(k\)-vertex cut and describe the graph which has the maximal spectral radius in this class. We also discuss the limit point of the maximal spectral radius.

Nicholas A.Loehr1, Bruce E.Sagan2, Gregory S.Warrington3
1 Department of Mathematics, College of William & Mary Williamsburg, VA
2Department of Mathematics, Michigan State University East Lansing, MI,
3Department of Mathematics, ‘‘Wake Forest University Winston-Salem, NC,
Abstract:

Consider lattice paths in \(\mathbb{Z}^2\) taking unit steps north (N) and east (E). Fix positive integers \(r,s\) and put an equivalence relation on points of \(\mathbb{Z}^2\) by letting \(v,w\) be equivalent if \(v-w = \ell(r,s)\) for some \(k \in \mathbb{Z}\). Call a lattice path \({valid}\) if whenever it enters a point \(v\) with an E-step, then any further points of the path in the equivalence class of \(v\) are also entered with an E-step. Loehr and Warrington conjectured that the number of valid paths from \((0,0)\) to \((nr,ns)\) is \({\binom{r+s}{nr}}^n\). We prove this conjecture when \(s=2\).

Arnold Knopfmacher1, Neville Robbins2
1School of Mathematics University of the Witwatersrand Johannesburg, South Africa
2Mathematics Department San Francisco State University San Francisco, CA 94132 USA
Abstract:

Given integers \(m \geq 2, r \geq 2\), let \(q_m(n), q_0^{(m)}(n), b_r^{(m)}(n)\) denote respectively the number of \(m\)-colored partitions of \(n\) into: distinct parts, distinct odd parts, and parts not divisible by \(r\).We obtain recurrences for each of the above-mentioned types of partition functions.

Philip Andrew Sinclair1
1 The British University in Egypt, EI Sherouk City, Misr-Ismalia Desert Road, Postal No. 11837, BO. Box 43, Egypt
Adnan Melekoglu1
1Department of Mathematics Faculty of Arts and Sciences Adnan Menderes University 09010 Aydin, TURKEY
Abstract:

A reflection of a regular map on a Riemann surface fixes some simple closed curves, which are called \({mirrors}\). Each mirror passes through some of the geometric points (vertices, face-centers and edge-centers) of the map such that these points form a periodic sequence which we call the \({pattern}\) of the mirror. For every mirror there exist two particular conformal automorphisms of the map that fix the mirror setwise and rotate it in opposite directions. We call these automorphisms the \({rotary\; automorphisms}\) of the mirror. In this paper, we first introduce the notion of pattern and then describe the patterns of mirrors on surfaces. We also determine the rotary automorphisms of mirrors. Finally, we give some necessary conditions under which all reflections of a regular map are conjugate.

O. Heden1, S. Marcugini2, F. Pambianco2, L. Storme3
1Department of Mathematics, KTH, S-100 44 Stockholm, Sweden
2Dipartimento di Matematica e Informat- ica, Universita di Perugia, Via Vanvitelli, 1, 106123 Perugia, Italy.
3Ghent University, Department of Pure Mathematics and Com- puter Algebra, Krijgslaan 281 – S22, 9000 Ghent, Belgium.
Abstract:

We prove the non-existence of maximal partial spreads of size \(76\) in \(\text{PG}(3,9)\). Relying on the classification of the minimal blocking sets of size 15 in \(\text{PG}(2,9)\) \([22]\), we show that there are only two possibilities for the set of holes of such a maximal partial spread. The weight argument of Blokhuis and Metsch \([3]\) then shows that these sets cannot be the set of holes of a maximal partial spread of size \(76\). In \([17]\), the non-existence of maximal partial spreads of size \(75\) in \(\text{PG}(3,9)\) is proven. This altogether proves that the largest maximal partial spreads, different from a spread, in \(\text{PG}(3,q = 9)\) have size \(q^2 – q + 2 = 74\).

Mao Peng1, Hao Shen1
1Department of Mathematics, Shanghai Jiao Tong University Shanghai 200240, P. R. China
Abstract:

A weakly connected dominating set \(W\) of a graph \(G\) is a dominating set such that the subgraph consisting of \(V(G)\) and all edges incident on vertices in \(W\) is connected. In this paper, we generalize it to \([r, R]\)-dominating set which means a distance \(r\)-dominating set that can be connected by adding paths with length within \(R\). We present an algorithm for finding \([r, R]\)-dominating set with performance ratio not exceeding \(ln \Delta_r + \lceil \frac{2r+1}{R}\rceil – 1\), where \(\Delta_r\) is the maximum number of vertices that are at distance at most \(r\) from a vertex in the graph. The bound for size of minimum \([r, R]\)-dominating set is also obtained.

Ralph P.Grimaldi1
1Rose-Hulman Institute of Technology 5500 Wabash Avenue Terre Haute, Indiana 47803-3999
Abstract:

For \(n \in \mathbb{N}\), let \(a_n\) count the number of ternary strings of length \(n\) that contain no consecutive \(1\)s. We find that \(a_n = \left(\frac{1}{2}+\frac{\sqrt{3}}{3}\right)\left(1 + \sqrt{3}\right)^n – \left(\frac{1}{2}-\frac{\sqrt{3}}{3}\right)\left(1 – \sqrt{3}\right)^n\). For a given \(n \geq 0\), we then determine the following for these \(a_n\) ternary strings:
(1)the number of \(0’\)s, \(1’\)s, and \(2’\)s;(2)the number of runs;(3) the number of rises, levels, and descents; and
(4)the sum obtained when these strings are considered as base \(3\) integers.

Following this, we consider the special case for those ternary strings (among the \(a_n\) strings we first considered) that are palindromes, and determine formulas comparable to those in (1) – (4) above for this special case.

A. Mahmiani1, A. lranmanesh2, Y. Pakravesh3
1University of Payame Noor, Gonbade Kavoos, Iran
2Department of Mathematics, Tarbiat Modares University P. O. Box: 14115-137, Tehran, Iran
3 Department of Mathematics, Tarbiat Modares University P. O. Box: 14115-137, Tehran, Iran
Abstract:

Topological indices of nanotubes are numerical descriptors that are derived from the graph of chemical compounds. Such indices, based on the distances in the graph, are widely used for establishing relationships between the structure of nanotubes and their physico-chemical properties. The Szeged index is obtained as a bond additive quantity, where bond contributions are given as the product of the number of atoms closer to each of the two end points of each bond. In this paper, we find an exact expression for the Szeged index of an armchair polyhex nanotube \((TUAC_6{[p,k]}\)).

D. DiMarco1
1Neumann College
Abstract:

It is widely recognized that certain graph-theoretic extremal questions play a major role in the study of communication network vulnerability. These extremal problems are special cases of questions concerning the realizability of graph invariants. We define a CS(\(p, q, \lambda, \delta\)) graph as a connected, separable graph having \(p\) points, \(q\) lines, line connectivity \(\lambda\) and minimum degree \(\delta\). In this notation, if the “CS” is omitted the graph is not necessarily connected and separable. An arbitrary quadruple of integers \((a, b, c, d)\) is called CS(\(p, q, A, 5\)) realizable if there is a CS(\(p, q, \lambda, \delta\)) graph with \(p = a, q = b, \lambda = c\) and \(\delta= d\). Necessary and sufficient conditions for a quadruple to be CS(\(p, q,\lambda, \delta\)) realizable are derived. In recent papers, the author gave necessary and sufficient conditions for \((p, q, \kappa, \Delta), (p, q, \lambda, \Delta), (p, q, \delta, \Delta), (p, q, \lambda, \delta)\) and \((p, q, \kappa, \delta)\) realizability, where \(A\) denotes the maximum degree for all points in a graph and \(\lambda\) denotes the point connectivity of a graph. Boesch and Suffel gave the solutions for \((p, q, \kappa), (p, q, \lambda), (p, q, \delta), (p, \Delta, \delta, \lambda)\) and \((p, \Delta, \delta, \kappa)\) realizability in earlier manuscripts.

Mahendra Jani1, Melkamu Zeleke1
1Department of Mathematics William Paterson University, Wayne, NJ 07470
Abstract:

We use \(k\)-trees to generalize the sequence of Motzkin numbers and show that Baxter’s generalization of Temperley-Lieb operators is a special case of our generalization of Motzkin numbers. We also obtain a recursive summation formula for the terms of \(3\)-Motzkin numbers and investigate some asymptotic properties of the terms of \(k\)-Motzkin numbers.

Hac Civciv1, Ramazan Turkmen1
1Department of Mathematics, Faculty of Art and Science, Selcuk University, 42031 Konya, Turkey
Abstract:

In this article, defining the matrix extensions of the Fibonacci and Lucas numbers, we start a new approach to derive formulas for some integer numbers which have appeared, often surprisingly, as answers to intricate problems, in conventional and in recreational Mathematics. Our approach provides a new way of looking at integer sequences from the perspective of matrix algebra, showing how several of these integer sequences relate to each other.

H. Doostie1, M. Maghasedi2
1Mathematics Department, Teacher Training University, 49 Mofateh Ave., Tehran 15614, Iran.
2Mathematics Department, Islamic Azad University, Karaj Branch, Iran.
Abstract:

For a finite group \(G\) the commutativity degree,

\[d(G)=\frac{|\{(x,y)|x,y \in G, xy=yx\}|}{|G|^2}\]

is defined and studied by several authors and when \(d(G) \geq \frac{1}{2}\) it is proved by P. Lescot in 1995 that \(G\) is abelian , or \(\frac{G}{Z(G)}\) is elementary abelian with \(|G’| = 2\), or \(G\) is isoclinic with \(S_3\) and \(d(G) = 1\). The case when \(d(G) < \frac{1}{2}\) is of interest to study. In this paper we study certain infinite classes of finite groups and give explicit formulas for \(d(G)\). In some cases the groups satisfy \(\frac{1}{4} < d(G) < \frac{1}{2}\). Some of the groups under study are nilpotent of high nilpotency classes.

Yuan Sun1, Hao Shen1
1Department of Mathematics Shanghai Jiaotong University Shanghoi 200240 China
Abstract:

In this paper, we construct a new infinite family of balanced binary sequences of length \(N = 4p\), \(p \equiv 5 \pmod{8}\) with optimal autocorrelation magnitude \(\{N, 0, \pm 4\}\).

Allan D.Mills1
1MATHEMATICS DEPARTMENT, TENNESSEE TECH. UNIVERSITY, COOKEVILLE, TN
Abstract:

The cocircuits of a splitting matroid \(M_{i,j}\) are described in terms of the cocircuits of the original matroid \(M\).

Jiansheng Cai1, Guizhen Liu2
1School of Mathematics and Information Sciences Weifang University, Weifang 261061, P.R.China.
2School of Mathematics and System Sciences Shandong University, Jinan 250100, P. R. China.
Abstract:

Let \(G\) be a graph with vertex set \(V(G)\) and let \(f\) be a nonnegative integer-valued function defined on \(V(G)\). A spanning subgraph \(F\) of \(G\) is called an \(f\)-factor if \(d_F(x) = f(x)\) for every \(x \in V(F)\). In this paper, we present some sufficient conditions for the existence of \(f\)-factors and connected \((f-2, f)\)-factors in \(K_{1,n}\)-free graphs. The conditions involve the minimum degree, the stability number, and the connectivity of graph \(G\).

F. Pambianco1, L. Storme2
1Dipartimento di Matematica e Informatica, Universita di Perugia, Via Vanvitelli 1, I-06123 Perugia, Italy
2Ghent University, Department of Pure Mathematics and Computer Algebra, Krijgslaan 281 – 522, $000 Gent, Belgium
Abstract:

We classify the minimal blocking sets of size 15 in \(\mathrm{PG}(2,9)\). We show that the only examples are the projective triangle and the sporadic example arising from the secants to the unique complete 6-arc in \(\mathrm{PG}(2,9)\). This classification was used to solve the open problem of the existence of maximal partial spreads of size 76 in \(\mathrm{PG}(3,9)\). No such maximal partial spreads exist \([13]\). In \([14]\), also the non-existence of maximal partial spreads of size 75 in \(\mathrm{PG}(3,9)\) has been proven. So, the result presented here contributes to the proof that the largest maximal partial spreads in \(\mathrm{PG}(3,q=9)\) have size \(q^2-q+2=74\).

Muhammad Akram1
1 Punjab University College of Information Technology, University of the Punjab, Old Campus, Lahore-54000, PAKISTAN.
Abstract:

Our work in this paper is concerned with a new kind of fuzzy ideal of a \(K\)-algebra called an \((\in, \in \vee_q)\)-fuzzy ideal. We investigate some interesting properties of \((\in, \in \vee_q)\)-fuzzy ideals of \(K\)-algebras. We study fuzzy ideals with thresholds which is a generalization of both fuzzy ideals and \((\in, \in \vee_q)\)-fuzzy ideals. We also present characterization theorems of implication-based fuzzy ideals.

Haiying Wang1, Liang Sun2
1 The School of Information Engineering China University of Geosciences (Beijing) Beijing 100083, P.R.China
2Department of Mathematics, Beijing Institute of Technology Beijing 100081, P. R. China
Abstract:

Let \(G\) be a digraph. For two vertices \(u\) and \(v\) in \(G\), the distance \(d(u,v)\) from \(u\) to \(v\) in \(G\) is the length of the shortest directed path from \(u\) to \(v\). The eccentricity \(e(v)\) of \(v\) is the maximum distance of \(v\) to any other vertex of \(G\). A vertex \(u\) is an eccentric vertex of \(v\) if the distance from \(v\) to \(u\) is equal to the eccentricity of \(v\). The eccentric digraph \(ED(G)\) of \(G\) is the digraph that has the same vertex set as \(G\) and the arc set defined by: there is an arc from \(u\) to \(v\) if and only if \(v\) is an eccentric vertex of \(u\). In this paper, we determine the eccentric digraphs of digraphs for various families of digraphs and we get some new results on the eccentric digraphs of the digraphs.

Konstantinos Drakakis1
1UCD CASL University College Dublin, Belfield, Dublin 4, Ireland
Abstract:

We present \(3\) open challenges in the field of Costas arrays. They are: a) the determination of the number of dots on the main diagonal of a Welch array, and especially the maximal such number for a Welch array of a given order; b) the conjecture that the fraction of Welch arrays without dots on the main diagonal behaves asymptotically as the fraction of permutations without fixed points and hence approaches \(1/e\) and c) the determination of the parity populations of Golomb arrays generated in fields of characteristic \(2\).

Baoyindureng Wu1, Li Zhang2
1College of Mathematics and System Sciences, Xinjiang University, Urumqi, Xinjiang 830046, P.R. China
2Department of Applied Mathematics, Tongji University, Shanghai 200092, P.R. China
Abstract:

Let \(G\) be the graph obtained from \(K_{3,3}\) by deleting an edge. We find a list assignment with \(|L(v)| = 2\) for each vertex \(v\) of \(G\), such that \(G\) is uniquely \(L\)-colorable, and show that for any list assignment \(L’\) of \(G\), if \(|Z'(v)| \geq 2\) for all \(v \in V(G)\) and there exists a vertex \(v_0\) with \(|L'(v_0)| > 2\), then \(G\) is not uniquely \(L’\)-colorable. However, \(G\) is not \(2\)-choosable. This disproves a conjecture of Akbari, Mirrokni, and Sadjad (Problem \(404\) in Discrete Math. \(266(2003) 441-451)\).

Michael A.Henning1, Justin Southey1
1School of Mathematical Sciences University of KwaZulu-Natal Pietermaritzburg, 3209 South Africa
Abstract:

A total dominating set of a graph is a set of vertices such that every vertex is adjacent to a vertex in the set. In this note, we show that the vertex set of every graph with minimum degree at least two and with no component that is a \(5\)-cycle can be partitioned into a dominating set and a total dominating set.

Jingjing Chen1, Elaine Eschen1, Hong-Jian Lai2
1Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506;
2Department of Mathematics, West Virginia University, Morgantown, WV 26506;
Abstract:

Let \(G\) be an undirected graph, \(A\) be an (additive) Abelian group and \(A^* = A – \{0\}\). A graph \(G\) is \(A\)-connected if \(G\) has an orientation such that for every function \(b: V(G) \longmapsto A\) satisfying \(\sum_{v\in V(G)} b(v) = 0\), there is a function \(f: E(G) \longmapsto A^*\) such that at each vertex \(v\in V(G)\) the net flow out of \(v\) equals \(b(v)\). We investigate the group connectivity number \(\Lambda_g(G) = \min\{n; G \text{ is } A\text{-connected for every Abelian group with } |A| \geq n\}\) for complete bipartite graphs, chordal graphs, and biwheels.

Stephan G.Wagner1
1INSTITUT FiIR MATHEMATIK, TECHNISCHE UNIVERSITAT GRAZ, STEYRERGASSE 30, 8010 Graz, AUSTRIA
Abstract:

Various enumeration problems for classes of simply generated families of trees have been the object of investigation in the past. We mention the enumeration of independent subsets, connected subsets or matchings for instance. The aim of this paper is to show how combinatorial problems of this type can also be solved for rooted trees and trees, which enables us to take better account of isomorphisms. As an example, we will determine the average number of independent vertex subsets of trees and binary rooted trees (every node has outdegree \(\leq 2\)).

Amir Daneshgar1, Hossein Hajiabolhassan2, Navid Hamedazimi3
1Department of Mathematical Sciences Sharif University of Technology P.O. Box 11365-9415, Tehran, Iran
2 Department of Mathematics Shahid Beheshti University P.O, Box 19834, Tehran, Iran
3Department of Mathematical Sciences Sharif University of Technology P.O. Box 11365-9415, Tehran, iran
Abstract:

In this paper, first we introduce the concept of a \({connected}\) graph homomorphism as a homomorphism for which the inverse image of any edge is either empty or a connected graph, and then we concentrate on chromatically connected (resp. chromatically disconnected) graphs such as \(G\) for which any \(\chi(G)\)-colouring is a connected (resp. disconnected) homomorphism to \(K_{\chi(G)}\).

In this regard, we consider the relationships of the new concept to some other notions as uniquely-colourability. Also, we specify some classes of chromatically disconnected graphs such as Kneser graphs \(KG(m,n)\) for which \(m\) is sufficiently larger than \(n\), and the line graphs of non-complete class II graphs.

Moreover, we prove that the existence problem for connected homomorphisms to any fixed complete graph is an NP-complete problem.

Adrian Kosowski1, Pawel Zylinski2
1DEPARTMENT OF ALGORITHMS AND SYSTEM MODELING GDANSK UNIVERSITY OF TECHNOLOGY, 80952 POLAND
2INSTITUTE OF COMPUTER SCIENCE UNIVERSITY OF GDANSK, 80952 POLAND
Abstract:

We show that every \(2\)-connected cubic graph of order \(n > 8\) admits a \(P_3\)-packing of at least \(\frac{9n}{11}n\) vertices. The proof is constructive, implying an \(O(M(n))\) time algorithm for constructing such a packing, where \(M(n)\) is the time complexity of the perfect matching problem for \(2\)-connected cubic graphs.

Meijie Ma1, Jun-Ming Xu2
1Department of Mathematics, Zhejiang Normal University Jinhua, 321004, China
2Department of Mathematics, University of Science and Technology of China Hefei, 230026, China
Abstract:

The locally twisted cube \(LTQ_n\) is a newly introduced interconnection network for parallel computing. As a variant of the hypercube \(Q_n\), \(LTQ_n\) has better properties than \(Q_n\) with the same number of links and processors. Yang, Megson and Evans Evans [Locally twisted cubes are \(4\)-pancyclic, Applied Mathematics Letters, \(17 (2004), 919-925]\) showed that \(LTQ_n\) contains a cycle of every length from \(4\) to \(2^n\). In this note, we improve this result by showing that every edge of \(LTQ_n\) lies on a cycle of every length from \(4\) to \(2^n\) inclusive.

Haiyan Wang1, Yanxun Chang1
1Institute of Mathematics Beijing Jiaotong University Beijing 100044, P. R. China
Abstract:

Necessary and sufficient conditions are given for the existence of a \((K_3 + e, \lambda)\)-group divisible design of type \(g^tu^1\).

Nick C.Fiala1
1Department of Mathematics St. Cloud State University St. Cloud, MN 56301
Abstract:

A \(\lambda\)-design on \(v\) points is a set of \(v\) subsets (blocks) of a \(v\)-set such that any two distinct blocks meet in exactly \(\lambda\) points and not all of the blocks have the same size. Ryser’s and Woodall’s \(\lambda\)-design conjecture states that all \(4\)-designs can be obtained from symmetric designs by a complementation procedure. In this paper, we establish feasibility criteria for the existence of \(\lambda\)-designs with two block sizes in the form of integrality conditions, equations, inequalities, and Diophantine equations involving various parameters of the designs. We use these criteria and a computer to prove that the \(\lambda\)-design conjecture is true for all \(\lambda\)-designs with two block sizes with \(v \leq 90\) and \(\lambda \neq 45\).

Emrah Kilic1, Dursun Tasci2
1TOBB Economics AND TECHNOLOGY UNIVERSITY MATHEMATICS DEPARTMENT 06560 ANKARA TURKEY
2D EPARTMENT OF MATHEMATICS, Gazi UNIVERSITY 06500 ANKARA TURKEY
Abstract:

In this paper, we consider the relationships between the sums of the Fibonacci and Lucas numbers and \(1\)-factors of bipartite graphs.

Zoran Stojakovic1, Mila Stojakovic2
1Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad 21000 Novi Sad, Serbia
2Department of Mathematics, Faculty of Engineering, University of Novi Sad 21000 Novi Sad, Serbia
Abstract:

We define extended orthogonal sets of \(d\)-cubes and show that they are equivalent to a class of orthogonal arrays, to geometric nets and a class of codes. As a corollary, an upper bound for the maximal number of \(d\)-cubes in an orthogonal set is obtained.

Yunging Zhang1
1Department of Mathematics, Nanjing University, Nanjing 210093, China
Abstract:

For two given graphs \(G_1\) and \(G_2\), the \({Ramsey\; number}\) \(R(G_1, G_2)\) is the smallest integer \(n\) such that for any graph \(G\) of order \(n\), either \(G\) contains \(G_1\) or the complement of \(G\) contains \(G_2\). Let \(P_n\) denote a path of order \(n\) and \(W_{m}\) a wheel of order \(m+1\). Chen et al. determined all values of \(R(P_n, W_{m})\) for \(n \geq m-1\). In this paper, we establish the best possible upper bound and determine some exact values for \(R(P_n, W_{m})\) with \(n \leq m-2\).

Bolian Liu1, Xiankun Zhang2
1Department of Mathematics South China Normal University Guangzhou,China
2Department of Mathematics West Virginia University Morgantown WV,U.S.A.
Abstract:

A container \(C(x,y)\) is a set of vertex-disjoint paths between vertices \(z\) and \(y\) in a graph \(G\). The width \(w(C(x,y))\) and length \(L(C(x,y))\) are defined to be \(|C(x,y)|\) and the length of the longest path in \(C(x,y)\) respectively. The \(w\)-wide distance \(d_w(x,y)\) between \(x\) and \(y\) is the minimum of \(L(C(x,y))\) for all containers \(C(x,y)\) with width \(w\). The \(w\)-wide diameter \(d_w(G)\) of \(G\) is the maximum of \(d_w(x,y)\) among all pairs of vertices \(x,y\) in \(G\), \(x \neq y\). In this paper, we investigate some problems on the relations between \(d_w(G)\) and diameter \(d(G)\) which were raised by D.F. Hsu \([1]\). Some results about graph equation of \(d_w(G)\) are proved.

Manouchehr Zaker1
1 Institute for Advanced Studies in Basic Sciences 45195-1159, Zanjan – Iran
Abstract:

Greedy defining sets have been studied for the first time by the author for graphs. In this paper, we consider greedy defining sets for Latin squares and study the structure of these sets in Latin squares. We give a general bound for greedy defining numbers and linear bounds for greedy defining numbers of some infinite families of Latin squares. Greedy defining sets of circulant Latin squares are also discussed in the paper.

E-mail Alert

Add your e-mail address to receive upcoming issues of Ars Combinatoria.

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;