Paola Biondi1, Pia Maria Lo Re1
1DIPARTIMENTO DI MATEMATICA E APPLICAZIONI, UNIVERSITA DI NAPOLI “FEDERICO II”, ITALY
Abstract:

Minimal blocking sets of class \([h,k]\) with respect to the external lines to an elliptic quadric of \(\text{PG}(3,q)\), \(q \geq 5\) prime, are characterized.

Bernie Martinelli1, Daniel Schaal2
1Mathematics Department Clarion University of Pennsylvania Clarion, PA, USA 16214
2Department of Mathematics and Statistics South Dakota State University Brookings, SD, USA 57007
Abstract:

For every integer \(c\) and every positive integer \(k\), let \(n = r(c, k)\) be the least integer, provided that it exists, such that for every coloring

\[\Delta: \{1,2,\ldots,n\} \rightarrow \{0,1\},\]

there exist three integers, \(x_1, x_2, x_3\), (not necessarily distinct) such that
\[\Delta(x_1) = \Delta(x_2) = \Delta(x_3)\]
and
\[x_1+x_2+c= kx_3.\]

If such an integer does not exist, then let \(r(c, k) = \infty\). The main result of this paper is that

\[r(c,2) =
\begin{cases}
|c|+1 & \text{if } c \text{ is even} \\
\infty & \text{if } c \text{ is odd}
\end{cases}\]

for every integer \(c\). In addition, a lower bound is found for \(r(c, k)\) for all integers \(c\) and positive integers \(k\) and linear upper and lower bounds are found for \(r(c, 3)\) for all positive integers \(c\).

Yang Yuansheng1, Xu Xirong1, Xi Yue1, Li Huijun1
1Department of Computer Science Dalian University of Technology Dalian, 116024, P. R. China
Abstract:

Let \(C_n\) denote the cycle with \(n\) vertices, and \(C_n^{(t)}\) denote the graphs consisting of \(t\) copies of \(C_n\) with a vertex in common. Koh et al. conjectured that \(C_n^{(t)}\) is graceful if and only if \(nt \equiv 0,3 \pmod 4\). The conjecture has been shown true for \(n = 3,5,6,7,4k\). In this paper, the conjecture is shown to be true for \(n = 9\).

E.Gokcen Kocer1
1Selcuk University, Faculty of Education 42099 Meram – Konya, Turkey
Abstract:

In this paper, we define the hyperbolic modified Pell functions by the modified Pell sequence and classical hyperbolic functions. Afterwards, we investigate the properties of the modified Pell functions.

Tomas Madaras1, Roman Sotak1
1Institute of Mathematics, Faculty of Sciences University of P. J. Safarik Jesennd 5, 041 54 Koiice, Slovak Republic
Abstract:

Deza and Grishukhin studied \(3\)-valent maps \(M_n{(p,q)}\) consisting of a ring of \(n\) \(g\)-gons whose inner and outer domains are filled by \(p\)-gons. They described the conditions for \(n, p, q\) under which such a map may exist and presented several infinite families of them. We extend their results by presenting several new maps concerning mainly large values of \(n\) and \(q\).

Ahmed Ainouche1
1CEREGMIA-GRIMAAG UAG-Campus de Schoelcher B.P. 7209 97275 Schoelcher Cedex Martinique (FRANCE)
Abstract:

A simple, undirected \(2\)-connected graph \(G\) of order \(n\) belongs to the class \(\mathcal{B}(n,\theta)\), \(\theta \geq 0\) if \(2(d(x) + d(y) + d(z)) \geq 3(n – 1 – \theta)\) holds for all independent triples \(\{x,y,z\}\) of vertices. It is known (Bondy’s theorem for \(2\)-connected graphs) that \(G\) is hamiltonian if \(\theta = 0\). In this paper we give a full characterization of graphs \(G\) in \(\mathcal{B}(n,\theta)\), \(\theta \leq 2\) in terms of their dual hamiltonian closure.

John Martino1, Paula Smith2
1Western Michigan University
2Ohio Dominican University
Abstract:

Two classes of regular Cayley maps, balanced and antibalanced, have long been understood, see \([12,11]\). A recent generalization is that of an e-balanced map, see \([7,2,5,8]\). These maps can be described using the power function introduced in \([4]\); e-balanced maps are the ones with constant power functions on the generating set. In this paper we examine a further generalization to the situation where the power function alternates between two values.

E.Gokcen Kocer1, Toufik Mansour2, Naim Tuglu3
1Faculty of Education, University of Selcuk, 42099 Meram-Konya, Turkey
2Department of Mathematics, University of Haifa, 31905 Haifa, Israel
3Department of Mathematics, University of Gazi, 06500 Teknikokullar-Ankara, Turkey
Abstract:

In this paper, we obtain the spectral norm and eigenvalues of circulant matrices with Horadam’s numbers. Furthermore, we define the semicirculant matrix with these numbers and give the Euclidean norm of this matrix.

V Vijayalakshmi1
1Department of Mathematics Anna University MIT Campus, Chennai – 600 044, India
Abstract:

We denote by \(G(n)\) the graph obtained by removing a Hamilton cycle from the complete graph \(K_n\). In this paper, we calculate the lower bound for the minimum number of monochromatic triangles in any \(2\)-edge coloring of \(G(n)\) using the weight method. Also, by explicit constructions, we give an upper bound for the minimum number of monochromatic triangles in \(2\)-edge coloring of \(G(n)\) and the difference between our lower and upper bound is just two.

Akhlaq Ahmad Bhatti1
1SCHOOL OF MATHEMATICAL SCIENCES 35-C-II, GULBERG III, LAHORE, PAKISTAN
Abstract:

In this paper, it is proved that the \(h\)-chromatic uniqueness of the linear \(h\)-hypergraph consisting of two cycles of lengths \(p\) and \(q\) having \(r\) edges in common when \(p=q\), \(2 \leq r \leq p-2\), and \(h \geq 3\). We also obtain the chromatic polynomial of a connected unicyclic linear \(h\)-hypergraph and show that every \(h\)-uniform cycle of length three is not chromatically unique for \(h \geq 3\).

M. Esmaeili1, T.A. Gulliver2
1Department of Mathematical Sciences Isfahan University of Technology Isfahan, Iran
2Dept. of Electrical and Computer Engineering University of Victoria P.O. Box 3055, STN CSC Victoria, B.C., V8W 3P6 Canada
Abstract:

The projection of binary linear block codes of length \(4m\) on \(\mathbb{F}_4^m\) is considered. Three types of projections, namely projections \(SE\), \(E\), and \(O\) are introduced. The BCH codes, Golay codes, Reed-Muller codes, and the quadratic residue code \(q_{32}\) are examined.

Mehdi Eliasi1, Bijan Taeri1
1Department of Mathematical Sciences, Isfahan University of Technology, Isfehan, Iran
Abstract:

The hyper Wiener index of a connected graph \(G\) is defined as
\(WW(G) = \frac{1}{2}\sum_{u,v \in V(G)} d(u,v) + \frac{1}{2}\sum_{(u,v) \in V(G)} d(u,v)^2\) where \(d(u, v)\) is the distance between vertices \(u,v \in V(G)\).
In this paper we find an exact expression for hyper Wiener index of \(HC_6[p, q]\), the zigzag polyhex nanotori.

T.Aaron Gulliver1, John N.C.Wong1
1Department of Electrical and Computer Engineering, University of Victoria, P.O. Box 3055, STN CSC, Victoria, BC, Canada V8W 3P6,
Abstract:

In this paper, we classify all optimal linear \([n, n/2]\) codes over \(\mathbb{Z}_4\) up to length \(n = 8\), and determine the number of optimal codes which are self-dual and formally self-dual. Optimal codes with linear binary images are identified. In particular, we show that for length \(8\), there are nine optimal codes for the Hamming distance, one optimal code for the Lee distance, and two optimal codes for the Euclidean distance.

Zan-Bo Zhang1,2, Tao Wang3, Dingjun Lou1
1Department of Computer Science, Sun Yat-sen University, Guangzhou 510275, China
2Department of Computer Engineering, Guangdong Industry Technical College, Guangzhou 510300, China
3Center for Combinatorics, LPMC, Nankai University, Tianjin 300071, China
Abstract:

In this paper, we show that if \(k \geq \frac{v+2}{4}\), where \(v\) denotes the order of a graph, a non-bipartite graph \(G\) is \(k\)-extendable if and only if it is \(2k\)-factor-critical. If \(k \geq \frac{v-3}{4}\), a graph \(G\) is \(k\)-extendable if and only if it is \((2k+1)\)-factor-critical. We also give examples to show that the two bounds are best possible. Our results are answers to a problem posted by Favaron \([3]\) and Yu \([11]\).

Zongtian Wei1, Yang Li1, Junmin Zhang1
1College of Science, Xi’an University of Architecture and Technology Xian, Shaanxi 710055, P.R. China
Abstract:

The edge-neighbor-scattering number of a graph \(G\) is defined to be \(EN_S(G) = \max\limits_{S\subseteq E(G)}\{w(G/S) -\mid |S|\}\) where \(S\) is any edge-cut-strategy of \(G\), \(w(G/S)\) is the number of the components of \(G/S\). In this paper, we give edge-neighbor-scattering number of some special classes of graphs, and then mainly discuss the general properties of the parameter.

Ahmet Tekcan1
1Unupac University, Facuiry oF SCIENCE, DEPARTMENT OF MATHEMATICS, GORUKLE 16059, Bursa-TURKEY
Abstract:

Let \(F(x,y) = ax^2 + bxy + cy^2\) be a binary quadratic form of discriminant \(\Delta = b^2 – 4ac\) for \(a,b,c \in \mathbb{Z}\), let \(p\) be a prime number and let \(\mathbb{F}_p\) be a finite field. In this paper we formulate the number of integer solutions of cubic congruence \(x^3 + ax^2 + bx + c \equiv 0 \pmod{p}\) over \(\mathbb{F}_p\), for two specific binary quadratic forms \(F_1^k(x,y) = x^2 + kxy + ky^2\) and \(F_2^k(x,y) = kx^2 + kxy + k^2y^2\) for integer \(k\) such that \(1 \leq k \leq 9\). Later we consider representation of primes by \(F_1^k\) and \(F_2^k\).

Iwona Wloch1, Andrzej Wloch1
1Technical University of Rzeszéw Faculty of Mathematics and Applied Physics ul. W. Pola 2,35-959 Rzeszéw, Poland
Abstract:

A subset \(S \subseteq V(G)\) is independent if no two vertices of \(S\) are adjacent in \(G\). In this paper we study the number of independent sets which meets the set of leaves in a tree. In particular we determine the smallest number and the largest number of these sets among \(n\)-vertex trees. In each case we characterize the extremal graphs.

Xu Xirong1, Yang Yuansheng1, Xi Yue1, Khandoker Mohammed Mominul Haque2, Shen Lixin3
1Department of Computer Science, Dalian University of Technology Dalian, 116024, P. R. China
2Department of Computer Science and Engineering Shahjalal University of Science and Technology, Sylhet-3114, Bangladesh
3Department of Computer Science, Dalian Maritime University Dalian, 116026, P. R. China
Abstract:

A graph \(G\) is called super edge-magic if there exists a bijection \(f\) from \(V(G) \cup E(G)\) to \(\{1,2,\ldots,|V(G)| + |E(G)|\}\) such that \(f(u) + f(v) + f(uv) = k\) is a constant for any \(uv \in E(G)\) and \(f(V(G)) = \{1,2,\ldots,|V(G)|\}\). Yasuhiro Fukuchi proved that the generalized Petersen graph \(P(n, 2)\) is super edge-magic for odd \(n \geq 3\). In this paper, we show that the generalized Petersen graph \(P(n,3)\) is super edge-magic for odd \(n \geq 5\).

Latifa Faouzi1, William Kocay2, Gérard Lopez3, Hamza Si Kaddour4
1Département de Mathématiques, Université Sidi Mohamed Ben Abdallah, Fés, Maroc
2Department of Computer Science, University of Manitoba Winnipeg, MB RST 2N2, Canada
3Institut de Mathématiques de Luminy, CNRS-UPR 9016 163 avenue de Luminy, case 907, 18288 Marseille cedez 9, France
4Institut Camille Jordan, Université Claude Bernard Lyon1 Domaine de Gerland – bét. Recherche B 50 avenue Tony-Garnier, F 69366 – Lyon cedex 07, France
Abstract:

For any integer \(k\), two tournaments \(T\) and \(T’\), on the same finite set \(V\) are \(k\)-similar, whenever they have the same score vector, and for every tournament \(H\) of size \(k\) the number of subtournaments of \(T\) (resp. \(T’\)) isomorphic to \(H\) is the same. We study the \(4\)-similarity. According to the decomposability, we construct three infinite classes of pairs of non-isomorphic \(4\)-similar tournaments.

E.Gokcen Kocer1, Naim Tuglu2
1Selcuk University, Faculty of Education 42099 Meram – Konya, Turkey
2Gazi University, Faculty of Arts and Science 06500 Teknikokullar – Ankara, Turkey
Abstract:

In this paper, we define the Pell and Pell-Lucas \(p\)-numbers and derive the analytical formulas for these numbers. These formulas are similar to Binet’s formula for the classical Pell numbers.

Jingrong Chen1, Heping Zhang2
1College of Mathematics, Physics and Software Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, P. R. China
2School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
Abstract:

A graph \(G\) is called resonant if the boundary of each face of \(G\) is an \(F\)-alternating closed trail with respect to some \(f\)-factor \(F\) of \(G\). We show that a plane bipartite graph \(G\) is resonant if and only if it is connected and each edge of \(G\) is contained in an \(f\)-factor and not in another \(f\)-factor.

L. Carlitz1, H.W. Gould2
1Duke University
2Department of Mathematics West Virginia University, PO Box 6310 Morgantown, WV 26506-6310
Tay-Woei Shyu1
1College of International Studies and Education for Overseas Chinese National Taiwan Normal University Linkou, Taipei County, Taiwan 24449, R.O.C.
Abstract:

Let \(P_k\) denote a path with \(k\) vertices and \(k-1\) edges. And let \(\lambda K_{n,n}\) denote the \(\lambda\)-fold complete bipartite graph with both parts of size \(n\). A \(P_k\)-decomposition \(\mathcal{D}\) of \(\lambda K_{n,n}\) is a family of subgraphs of \(\lambda K_{n,n}\) whose edge sets form a partition of the edge set of \(\lambda K_{n,n}\), such that each member of \(\mathcal{G}\) is isomorphic to \(P_k\). Necessary conditions for the existence of a \(P_k\)-decomposition of \(\lambda K_{n,n}\) are (i) \(\lambda n^2 \equiv 0 \pmod{k-1}\) and (ii) \(k \leq n+1\) if \(\lambda=1\) and \(n\) is odd, or \(k \leq 2n\) if \(\lambda \geq 2\) or \(n\) is even. In this paper, we show these necessary conditions are sufficient except for the possibility of the case that \(k=3\), \(n=15\), and \(k=28\).

Steven T.Dougherty1, T.Aaron Gulliver2, Reshma Ramadurai 3
1Department of Mathematics University of Scranton Scranton, PA 18510, USA
2Department of Electrical and Computer Engineering University of Victoria Victoria, BC V8W 3P6, Canada
3Department of Mathematics University of Illinois at Chicago Chicago, IL 60607, USA
Abstract:

We describe a technique for producing self-dual codes over rings and fields from symmetric designs. We give special attention to biplanes and determine the minimum weights of the codes formed from these designs. We give numerous examples of self-dual codes constructed including an optimal code of length \(22\) over \(\mathbb{Z}_4\) with respect to the Hamming metric from the biplane of order \(3\).

Arnfried Kemnitz1, Massimiliano Marangio2
1COMPUTATIONAL MATHEMATICS, TECHNISCHE UNIVERSITAT BRAUN- SCHWEIG, POCKELSSTR. 14, D-38106 BRAUNSCHWEIG, GERMANY
2COMPUTATIONAL MATHEMATICS, TECHNISCHE UNIVERSITAT BRAUNSCHWEIG, PocKELssTr. 14, D-38106 BRAUNSCHWEIG, GERMANY
Abstract:

The distance graph \(G(S, D)\) has vertex set \(V(G(S, D)) = S \cup \mathbb{R}^n\) and two vertices \(u\) and \(v\) are adjacent if and only if their distance \(d(u, v)\) is an element of the distance set \(D \subseteq \mathbb{R}_+\).

We determine the chromatic index, the choice index, the total chromatic number and the total choice number of all distance graphs \(G(\mathbb{R}, D)\), \(G(\mathbb{Q}, D)\) and \(G(\mathbb{Z}, D)\) transferring a theorem of de Bruijn and Erdős on infinite graphs. Moreover, we prove that \(|D| + 1\) is an upper bound for the chromatic number and the choice number of \(G(S,D)\), \(S \subseteq \mathbb{R}\).

Rajender Parsad1, Sanpei Kageyama2, V.K. Gupta1
1LA.S.R.L, Library Avenue, New Delhi — 110 012, India
2Hiroshima University, Higashi-Hiroshima 739-8524, Japan
Abstract:

Some results on combinatorial aspects of block designs using the complementary property have been obtained. The results pertain to non-existence of partially balanced incomplete block (PBIB) designs and identification of new \(2\)-associate and \(3\)-associate PBIB designs. A method of construction of extended group divisible (EGD) designs with three factors using self-complementary rectangular designs has also been given. Some rectangular designs have also been obtained using self-complementary balanced incomplete block designs. Catalogues of EGD designs and rectangular designs obtainable from these methods of construction, with number of replications \(\leq 10\) and block size \(\leq 10\) have been prepared.

Michael J.Ferrara1, Ronald J.Gould2, John R.Schmitt3
1 Department of Mathematics University of Colorado at Denver
2Department of Mathematics and Computer Science Emory University
3 Department of Mathematics Middlebury College
Abstract:

For any simple graph \(H\), let \(\sigma(H, n)\) be the minimum \(m\) so that for any realizable degree sequence \(\pi = (d_1, d_2, \ldots, d_n)\) with sum of degrees at least \(m\), there exists an \(n\)-vertex graph \(G\) witnessing \(\pi\) that contains \(H\) as a weak subgraph. Let \(F_{k}\) denote the friendship graph on \(2k+1\) vertices, that is, the graph of \(k\) triangles intersecting in a single vertex. In this paper, for \(n\) sufficiently large, \(\sigma(F_{k},n)\) is determined precisely.

Xianglin Wei1, Ren Ding1
1College of Mathematics, Hebei Normal University Shijiazhuang 050016, People’s Republic of China
Abstract:

Let \(C\) be a plane convex body, and let \(l(ab)\) be the Euclidean length of a longest chord of \(C\) parallel to the segment \(ab\) in \(C\). By the relative length of \(ab\) in a convex body \(C\), we mean the ratio of the Euclidean length of \(ab\) to \(\frac{l(ab)}{2}\). We say that a side \(ab\) of a convex \(n\)-gon is relatively short if the relative length of \(ab\) is not greater than the relative length of a side of the regular \(n\)-gon. In this article, we provide a significant sufficient condition for a convex hexagon to have a relatively short side.

David G.Glynn1, T.Aaron Gulliver2, Manish K.Gupta3
1School of Mathematical Sciences The University of Adelaide, SA 5005 Australia (previously Christchurch, New Zealand (Aotearoa))
2Department of Electrical & Computer Eng., University of Victoria, P.O. Box 3055, STN CSC, Victoria, B.C., Canada V8W 3P6
3Department of Mathematics & Statistics, Queens University 99 University Ave, Kingston, ON K7L 3N6, Canada
Abstract:

This paper studies families of self-orthogonal codes over \(\mathbb{Z}_4\). We show that the simplex codes (of Type \(a\) and Type \(\beta\)) are self-orthogonal. We answer the question of \(\mathbb{Z}_4\)-linearity for some codes obtained from projective planes of even order. A new family of self-orthogonal codes over \(\mathbb{Z}_4\) is constructed via projective planes of odd order. Properties such as self-orthogonality, weight distribution, etc. are studied. Finally, some self-orthogonal codes constructed from twistulant matrices are presented.

J.Richard Lundgren1, K. B.Reid2, Dustin J.Stewart1
1University of Colorado at Denver, Denver, CO 80217
2California State University San Marcos, San Marcos, CA 92096
Abstract:

A complete paired comparison digraph \(D\) is a directed graph in which \(xy\) is an arc for all vertices \(x,y\) in \(D\), and to each arc we assign a real number \(0 \leq a \leq 1\) called a weight such that if \(xy\) has weight \(a\) then \(yx\) has weight \(1 – a\). We say that two vertices \(x, y\) dominate a third \(z\) if the weights on \(xz\) and \(yz\) sum to at least \(1\). If \(x\) and \(y\) dominate all other vertices in a complete paired comparison digraph, then we say they are a dominant pair. We construct the domination graph of a complete paired comparison digraph \(D\) on the same vertices as \(D\) with an edge between \(x\) and \(y\) if \(x\) and \(y\) form a dominant pair in \(D\). In this paper, we characterize connected domination graphs of complete paired comparison digraphs. We also characterize the domination graphs of complete paired comparison digraphs with no arc weight of \(.5\).

Sabine Klinkenberg1, Lutz Volkmann1
1Lehrstuhl II fiir Mathematik, RWTH Aachen University, 52056 Aachen, Germany
Abstract:

A graph \(G\) is a \((d,d+k)\)-graph, if the degree of each vertex of \(G\) is between \(d\) and \(d+k\). Let \(p > 0\) and \(d+k \geq 2\) be integers. If \(G\) is a \((d,d+k)\)-graph of order \(n\) with at most \(p\) odd components and without a matching \(M\) of size \(2|M| = n – p\), then we show in this paper that

  1. \(n \geq 2d+p+2\) when \(p \leq k-2\),
  2. \(n \geq 2\left\lceil \frac{d(p+2)}{k} \right\rceil +p +2\) when \(p \geq k-1\).

Corresponding results for \(0 \leq p \leq 1\) and \(0 \leq k \leq 1\) were given by Wallis \([6]\), Zhao \([8]\), and Volkmann \([5]\).

Examples will show that the given bounds (i) and (ii) are best possible.

A. Elumalai1, G. Sethuraman1
1Department of Mathematics Crescent Engineering College, Chennai – 600 048
Abstract:

In this paper, we prove that the cycle \(C_n\) with parallel chords and the cycle \(C_n\) with parallel \(P_k\)-chords are cordial for any odd positive integer \(k \geq 3\) and for all \(n \geq 4\) except for \(n \equiv 4r + 2, r \geq 1\). Further, we show that every even-multiple subdivision of any graph \(G\) is cordial and we show that every graph is a subgraph of a cordial graph.

David Romero1, Abdon Sanchez-Arroyo2
1lInstituto de Mateméticas, Universidad Nacional Auténoma de México, Av. Univer- sidad s/n., 62210 Cuernavaca, Mor., Mexico.
2Calidad y Seguridad de la Informacién, Secretarfa de Hacienda y Crédito Publico, Constituyentes 1001-B, Piso 3, Col, Belén de las flores, 01110 México, D.F., Mexico.
Abstract:

A hypergraph is linear if no two distinct edges intersect in more than one vertex. A long standing conjecture of Erdős, Faber, and Lovász states that if a linear hypergraph has \(n\) edges, each of size \(n\), then its vertices can be properly colored with \(n\) colors. We prove the correctness of the conjecture for a new, infinite class of linear hypergraphs.

B. Balamohan1, R.B. Richter2
1University of Toronto
2University of Waterloo
Abstract:

We use a computer to show that the crossing number of generalized Petersen graph \(P(10,3)\) is six.

Peter Adams1, Darryn Bryant1, Mary Waterhouse1
1Department of Mathematics The University of Queensland Qld 4072 Australia
Abstract:

Let \(G\) be a graph in which each vertex has been coloured using one of \(k\) colours, say \(c_1,c_2,\ldots,c_k\) If an \(m\)-cycle \(C\) in \(G\) has \(n_i\) vertices coloured \(c_i\), \(i = 1,2,\ldots,k\), and \(|n_i – n_j| \leq 1\) for any \(i,j \in \{1,2,\ldots,k\}\), then \(C\) is equitably \(k\)-coloured. An \(m\)-cycle decomposition \(C\) of a graph \(G\) is equitably \(k\)-colourable if the vertices of \(G\) can be coloured so that every \(m\)-cycle in \(C\) is equitably \(k\)-coloured. For \(m = 4,5\) and \(6\), we completely settle the existence problem for equitably \(2\)-colourable \(m\)-cycle decompositions of complete graphs and complete graphs with the edges of a \(1\)-factor removed.

E-mail Alert

Add your e-mail address to receive upcoming issues of Ars Combinatoria.

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;