R.G. Stanton1
1Department of Computer Science University of Manitoba Winnipeg, Canada R3T 2N2
Warwick de Launey1
1 Cryptomathematics Research c/o DVR2, ‘A’ Block, New Wing Victoria Barracks St Kilda Road Victoria 3004 AUSTRALIA
Abstract:

Let \(x_1, x_2, \ldots, x_v\) be commuting indeterminates over the integers. We say an \(v \times v \times v \ldots \times v \) n-dimensional matrix is a proper \(v\)-dimensional orthogonal design of order \(v\) and type \((s_1, s_2, \ldots, s_r)\) (written \(\mathrm{OD}^n(s_1, s_2, \ldots, s_r)\)) on the indeterminates \(x_1, x_2, \ldots, x_r\) if every 2-dimensional axis-normal submatrix is an \(\mathrm{OD} (s_1, s_2, \ldots, s_r)\) of order \(v\) on the indeterminates \(x_1, x_2, \ldots, x_r\). Constructions for proper \(\mathrm{OD}^n(1^2)\) of order 2 and \(\mathrm{OD}^n(1^4)\) of order 4 are given in J. Seberry (1980) and J. Hammer and J. Seberry (1979, 1981a), respectively. This paper contains simple constructions for proper \(\mathrm{OD}^n(1^{2})\), \(\mathrm{OD}^n(1^{4})\), and \(\mathrm{OD}^n(1^{ 8})\) of orders 2, 4, and 8, respectively. Prior to this paper no proper higher dimensional OD on more than 4 indeterminates was known.

Alan Frieze1, Colin McDiarmid2, Bruce Reed3
1Department of Mathematics Carnegie Mellon University Pittsburg, Pennsylvania
2Mathematical Institute Oxford University Oxford, England
3 Department of Combinatorics and Optimization University of Waterloo Waterloo, Ontario Canada N2L 3G1
Abstract:

Bondy and Fan recently conjectured that if we associate non-negative real weights to the edges of a graph so that the sum of the edge weights is \(W\), then the graph contains a path whose weight is at least \(\frac{2W}{n}\). We prove this conjecture.

Yair Caro1
1 Department of Mathematics School of Education . University of Haifa — Oranim Tivon 36-910, ISRAEL
Abstract:

Let \(H(V, E)\) be an \(r\)-uniform hypergraph. Let \(A \subset V\) be a subset of vertices and define \(\deg_H(A) = |\{e \in E : A \subset e\}|\).

We say that \(H\) is \((k, m)\)-divisible if for every \(k\)-subset \(A\) of  \(V(H)\), \(\deg_H(A) \equiv 0 \pmod{m}\). (We assume that \(1 \leq k < r\)).

Given positive integers \(r \geq 2\), \(k \geq 1\) and \(q\) a prime power, we prove that if \(H\) is an \(r\)-uniform hypergraph and \(|E| > (q-1) \binom{\mid V \mid}{k} \), then \(H\) contains a nontrivial subhypergraph \(F\) which is \((k, q)\)-divisible.

G. Faina1
1Dipartimento di Matematica Universita di Perugia Via Vanvitelli 06100 Perugia Italy
Abstract:

It is well known that there exist complete \(k\)-caps in \(\mathrm{PG}(3,q)\) with \(k \geq \frac{q^2+q+4}{2}\) and it is still unknown whether or not complete \(k\)-caps of size \(k < \frac{q^2+q+4}{2}\) and \(q\) odd exist. In this paper sufficient conditions for the existence of complete \(k\)-caps in \(\mathrm{PG}(3,q)\), for good \(q \geq 7\) and \(k < \frac{q^2+q+4}{2}\), are established and a class of such complete caps is constructed.

Shen Hao1
1 Department of Applied Mathematics Shanghai Jiao Tong University
Abstract:

It is proved in this paper that for any given odd integer \(\lambda \geq 1\), there exists an integer \(v_0 = v_0(\lambda)\), such that for \(v > v_0\), the necessary and sufficient conditions for the existence of an indecomposable triple system \(B(3,\lambda; v)\) without repeated blocks are \(\lambda(v – 1) \equiv 0 \pmod{2}\) and \(\lambda{v(v – 1)} \equiv 0 \pmod{6}.\)

Bert Faβbender1
1Mathematisches Institut Universitat zu KdIn Weyertal 86-90 D-5000 K6in 41 (Lindenthal) West Germany
Abstract:

We prove that if \(G\) is a 1-tough graph with \(n = |V(G)| \geq 13\) such that
the degree sum of any three independent vertices is at least \(\frac{3n-14}{2}\), then \(G\) is hamiltonian.

Martin Bata1
1Department of Mathematics Technical University KoSice, Czechoslovakia
Abstract:

This paper deals with the problem of labeling the vertices, edges, and interior faces of a grid graph in such a way that the label of the face itself and the labels of vertices and edges surrounding that face add up to a value prescribed for that face.

Zhi-Hong Chen1
1 Department of Mathematics Wayne State University Detroit Mi 48202
Abstract:

Let \(G\) be a 3-edge-connected simple triangle-free graph of order \(n\) . Using a contraction method, we prove that if \(\delta(G) \geq 4\) and if \(d(u) + d(v) > n/10\) whenever \(uv \in E(G)\) (or whenever \(uv \notin E(G)\) ), then the graph \(G\) has a spanning eulerian sub-
graph. This implies that the line graph \(L(G)\) is hamiltonian. We shall also characterize the extremal graphs.

Peter Horak1, Norbert Sauer2
1 Katedra Matematiky SvF SVST Radlinského 11 813 68 Bratislava Czechoslovakia
2Department of Mathematics and Statistics University of Calgary Calgary, Alberta Canada T2N 1N4
Abstract:

Let \(k,n\) be positive integers. Define the number \(f(k,n)\) by\\
\(f(k,n) = \min \left\{\max \left\{|S_i|: i=1,\ldots,k\right\}\right\},\)
where the minimum is taken over all \(k\)-tuples \(S_1,\ldots,S_k\) of cliques of the complete graph \(K_n\), which cover its edge set. Because there exists an \((n,m,1)\)-BIBD if and only if \(f(k,n) = m\), for \(k=\frac{n(n-1)}{m(m-1)}\), the problem of evaluating \(f(k,n)\) can also be considered as a generalization of the problem of existence of balanced incomplete block designs with \(\lambda=1\).

In the paper, the values of \(f(k,n)\) are determined for small \(k\) and some asymptotic properties of \(f\) are derived. Among others, it is shown that for all \(k\) \(\lim_{n\to\infty} \frac {f(k,n)}{n} \) exists.

Kishore Sinha1
1Department of Statistics Birsa Agricultural University Ranchi 834006 India
Abstract:

A new method of construction of balanced ternary designs from PBIB designs, which yields two new designs, is given.

E.J. Cockayne1, C.M. Mynhardt2
1University of Victoria Victoria, Canada
2University of South Africa Pretoria, South Africa
Abstract:

A dominating set \(X\) of a graph \(G\) is a k-minimal dominating set of \(G\) iff the
removal of any \(\ell \leq k\) vertices from \(X\) followed by the addition of any \(\ell \sim 1\) vertices of G
results in a set which does not dominate \(G\). The \(k\)-minimal domination number IWRC)
of \(G\) is the largest number of vertices in a k-minimal dominating set of G. The sequence
\(R:m_1 \geq m_2 \geq… \geq m_k \geq …. \geq\) n of positive integers is a domination sequence iff
there exists a graph \(G\) such that \(\Gamma_1 (G) = m_1, \Gamma_2(G) = m_2,… \Gamma_k(G) = m_k,…,\)
and \(\gamma(G) = n\), where \(\gamma(G)\) denotes the domination number of G. We give sufficient
conditions for R to be a domination sequence.

Joseph Zaks1,2
1 University of Waterloo CANADA N2L 3G1
2 University of Haifa ISRAEL 31999
C.R.J. Clapham1, J. Sheehan1
1 Dept of Mathematics University of Aberdeen Aberdeen, Scotland ABO 2TY
Abstract:

Using the definition of \(k\)-free, a known result can be re-stated as follows: If \(G\) is not edge-reconstructible then \(G\) is \(k\)-free, for all even \(k\). To get closer, therefore, to settling the Edge-Reconstruction Conjecture, an investigation is begun into which graphs are, or are not, \(k\)-free (for different values of \(k\), in particular for \(k = 2\)); we also discuss which graphs are \(k\)-free, for all \(k\).

Bhaskar Bagchi1, Sunanda Bagchi2, A.C. Mukhopadhyay2
1Stat-Math Division Indian Statistical Institute 203 B.T. Road Calcutta ~ 700 035 India
2 Computer Science Unit Indian Statistical Institute 203 B.T. Road Calcutta ~ 700 035 India
Ahmed M. Assaf1, N. Shalaby2
1Department of Mathematics Central Michigan University Mt. Pleasant, MI 48859 U.S.A.
2Department of Mathematics University of Toronto Toronto, Ontario, MSA 1A1 CANADA
Abstract:

A \((v, k, \lambda)\) covering design of order \(v\), block size \(k\), and index \(\lambda\) is a collection of \(k\)-element subsets, called blocks of a set \(V\) such that every \(2\)-subset of \(V\) occurs in at least \(\lambda\) blocks. The covering problem is to determine the minimum number of blocks in a covering design. In this paper we solve the covering problem with \(k = 5\) and \(\lambda = 4\) and all positive integers \(v\) with the possible exception of \(v = 17, 18, 19, 22, 24, 27, 28, 78, 98\).

Lucien Haddad1, Vojtech Rédl2
1Department of Mathematics University of Toronto Toronto, Ontario MIC 1A4 Canada
2Emory University Atlanta, Georgia U.S.A. 30322
Abstract:

Let \(\rho\) be an \(h\)-ary areflexive relation. We study the complexity of finding a strong \(h\)-coloring for \(\rho\), which is defined in the same way for \(h\)-uniform hypergraphs.In particular we reduce the \(H\)-coloring problem for graphs to this problem, where \(H\) is a graph depending on \(\rho\). We also discuss the links of this problem with the problem of
finding a completeness criterion for finite algebras.

Jerzy Topp1, Lutz Volkmann1
1 Lehrstuhl II fir Mathematik, Technische Hochschule Aachen Templergraben 55, 5100 Aachen, Germany
Yair Caro1
1 Department of Mathematics School of Education . University of Haifa – Oranim Tivon 36-910, ISRAEL
Abstract:

Let \( {Z}_k\) be the cyclic group of order \( k\). Let \( H\) be a graph. A function \( c: E(H) \to {Z}_k\) is called a \( {Z}_k\)-coloring of the edge set \( E(H)\) of \(H\). A subgraph \( G \subseteq H\) is called zero-sum (with respect to a \( {Z}_k\)-coloring) if \( \sum_{e \in E(G)} c(e) \equiv 0 \pmod{k}\). Define the zero-sum Turán numbers as follows. \( T(n, G, {Z}_k)\) is the maximum number of edges in a \( {Z}_k\)-colored graph on \( n\) vertices, not containing a zero-sum copy of \( G\). Extending a result of [BCR], we prove:

THEOREM.
Let \( m \geq k \geq 2\) be integers, \( k | m\). Suppose \( n > 2(m-1)(k-1)\), then
\[T(n,K_{1,m},{Z}_k) =
\left\{
\begin{array}{ll}
\frac{(m+k-2)-n}{2}-1, & if \;\; n-1 \equiv m \equiv k \equiv 0 \pmod{2}; \\
\lfloor \frac{(m+k-2)-n}{2} \rfloor, & otherwise.
\end{array}
\right.\]

A. M. Assaf1, W. H. Mills2, R.C. Mullin3
1Central Michigan University
2Institute for Defense Analyses Princeton
3University of Waterloo
Abstract:

A tricover of pairs by quintuples on a \(v\)-element set \(V\) is a family of 5-element subsets of \(V\), called blocks, with the property that every pair of distinct elements of \(V\) occurs in at least three blocks. If no other such tricover has fewer blocks, the tricover is said to be minimum, and the number of blocks in a minimum tricover is the tricovering number \(C_3(v,5,2)\), or simply \(C_3(v)\). It is well known that \(C_3(v) \geq \lceil \frac{{v} \lceil \frac {3(v-1)}{4} \rceil} {5} \rceil = B_3(v)\), where \(\lceil x\rceil\) is the smallest integer that is at least \(x\). It is shown here that if \(v \equiv 1 \pmod{4}\), then \(C_3(v) = B_3(v) + 1\) for \(v \equiv 9\) or \(17 \pmod{20}\), and \(C_3(v) = B_3(v)\) otherwise.

W. Edwin Clark1, Larry A. Dunning2
1 Department of Mathematics University of South Florida Tampa, Florida U.S.A. 33620-5700
2Department of Computer Science Bowling Green State University Bowling Green, Ohio U.S.A. 43403-0214
Abstract:

We investigate collections \( {H} = \{H_1, H_2, \ldots, H_m\}\) of pairwise disjoint \(w\)-subsets \(H_i\) of an \(r\)-dimensional vector space \(V\) over \( {GF}(q)\) that arise in the construction of byte error control codes. The main problem is to maximize \(m\) for fixed \(w, r,\) and \(q\) when \({H}\) is required to satisfy a subset of the following properties: (i) each \(H_i\) is linearly independent; (ii) \(H_i \cap H_j = \{0\}\) if \(i \neq j\); (iii) \((H_i) \cap (H_j) = \{0\}\) if \(i \neq j\);( iv) any two elements of \(H_i \cup H_j\) are linearly independent;(v) any three elements of \(H_1 \cup H_2 \cup \cdots \cup H_m\) are linearly independent.
Here \((x)\) denotes the subspace of \(V\) spanned by \(X\). Solutions to these problems yield linear block codes which are useful in controlling various combinations of byte and single bit errors in computer memories. For \(r = w + 1\) and for small values of \(w\) the problem is solved or nearly solved. We list a variety of methods for constructing such partial partitions and give several bounds on \(m\).

Oscar Moreno1
1 Department of Mathematics University of Puerto Rico Rio Piedras PUERTO RICO 00931
Abstract:

There is a conjecture of Golomb and Taylor that asserts that the Welch construction for Costas sequences with length \(p-1\), \(p\) prime, is the only one with the property of single periodicity.

In the present paper we present and prove a weaker conjecture: the Welch construction is the only one with the property that its differences are a shift of the original sequence.

Alphonse Baartmans1, Joseph Yucas2
1 Department of Mathematics Michigan Technological University Houghton, MI U.S.A. 49931-1295
2Department of Mathematics Southern Iiinois University—-Carbondale U.S.A. 62901-4408
Abstract:

In this paper we give a necessary condition for the Steiner system \(S(3,4,16)\) obtained from a one-point extension of the points and lines of \( {PG}(3,2)\) to be further extendable to a Steiner system \(S(4,5,17)\).

Y.H. Peng1, C.C. Chen2, K.M. Koh2
1 Department of Mathematics Universiti Pertanian Malaysia 48400 Serdang, Malaysia
2 Department of Mathematics National University of Singapore Kent Ridge, Singapore 05-11
Abstract:

The edge-toughness \(\tau_1(G)\) of a graph \(G\) is defined as

\[\tau_1(G) = \min\left\{\frac{|E(G)|}{w(G-X)} \mid X { is an edge-cutset of } G\right\},\]

where \(w(G-X)\) denotes the number of components of \(G-X\). Call a graph \(G\) balanced if \(\tau_1(G) = \frac{|E(G)|}{w(G-E(G))-1}\). It is known that for any graph \(G\) with edge-connectivity \(\lambda(G)\),
\(\frac{\lambda(G)}{2} < \tau_1(G) \leq \lambda(G).\) In this paper we prove that for any integer \(r\), \(r > 2\) and any rational number \(s\) with \(\frac{r}{2} < s \leq r\), there always exists a balanced graph \(G\) such that \(\lambda(G) = r\) and \(\tau_1(G) = s\).

Todd Hoffman1, John Mitchem1, Edward Schmeichel1
1Department of Mathematics and Computer Science San Jose State University San Jose, CA 95192
J.D. Key1, K. Mackenzie1
1 Department of Mathematical Sciences, Clemson University, Clemson, SC 29634, U.S.A.
Abstract:

Using the permutation action of the group \( {PSL}_2(2^m)\) on its dihedral subgroups of order \(2(2^m + 1)\) for the description of the class of designs \(W(2^m)\) derived from regular ovals in the Desarguesian projective plane of order \(2^m\), we construct a \(2\)-design of ovals for \(W(2^m)\) for \(m \geq 3\), and thus determine certain properties of the binary codes of these classes of designs.

Charles J. Colbourn1, Dean G. Hoffman1, Charles C. Lindner 1
1Department of Algebra, Combinatorics and Analysis 120 Mathematics Annex Auburn University Auburn, Alabama 36849-5307
Abstract:

We give a complete solution to the intersection problem for a pair of Steiner systems \(S(2,4,v)\), leaving a handful of exceptions when \(v = 25, 28,\) {and } \(37\).

Y. H. Harris1
1Kwong SUNY College at Fredonia Fredonia, NY 14063
Abstract:

A scheme for classifying hamiltonian cycles in \(P_m \times P_n\), is introduced.We then derive recurrence relations, exact and asymptotic values for the number of hamiltonian cycles in \(P_4 \times P_n\) and \(P_5 \times P_n\).

S.C. Locke1
1Florida Atlantic University
Abstract:

If each pair of vertices in a graph \(G\) is connected by a long path, then the cycle space of \(G\) has a basis consisting of long cycles. We propose a conjecture regarding the above relationship. A few results supporting the conjecture are given.

Bert L. Hartnell1, Douglas F. Rall2
1 Department of Mathematics and Computing Science Saint Mary’s University Halifax, Nova Scotia Canada B3H 3C3
2Department of Mathematics Furman University Greenville, South Carolina 29613 U.S.A.
Abstract:

For any tree \(T\), let \(\gamma(T)\) represent the size of a minimum dominating set. Let \({E}_0\) represent the collection of trees with the property that, regardless of the choice of edge \(e\) belonging to the tree \(T\), \(\gamma(T – e) = \gamma(T)\). We present a constructive characterization of \({E}_0\).

R. Craigen 1
1Dept. of Mathematics University of Lethbridge Lethbridge, AB Canada T1K 3M4
Abstract:

A procedure based on the Kronecker product yields \(\pm 1\)-matrices \(X,Y\) of order \(8mn\), satisfying
\(XX^t + YY^t = 8mnI \quad {and} \quad XY^t = YX^t = 0,\)
given Hadamard matrices of orders \(4m\) and \(4n\). This allows the construction of some infinite classes of Hadamard matrices – and in particular orders \(8mnp\), for values of \(p\) including (for \(j \geq 0\)) \(5, 9^j, 25, 9^j, \), improving the usual Kronecker product construction by at least a factor of \(2\). A related construction gives Hadamard matrices in orders \(4 \cdot 5^i \cdot 9^j, 0 \leq i \leq 4\). To this end we introduce some disjoint weighing matrices and exploit certain Williamson matrices studied by Turyn and Xia. Some new constructions are given for symmetric and skew weighing matrices, resolving the case of skew \(W(N, 16)\) for \(N = 30, 34, 38\).

L.J. Cummings1, M.E. Mays2
1University of Waterloo Waterloo, Ontario Canada N2L 3G1
2 West Virginia University Morgantown, West Virginia U.S.A. 26506
Abstract:

The set of Lyndon words of length \(N\) is obtained by choosing those strings of length \(n\) over a finite alphabet which are lexicographically least in the aperiodic equivalence classes determined by cyclic permutation. We prove that interleaving two Lyndon words of length \(n\) produces a Lyndon word of length \(2n\). For the binary alphabet \(\{0, 1\}\) we represent the set of Lyndon words of length \(n\) as vertices of the \(n\)-cube. It is known that the set of Lyndon words of length \(n\) form a connected subset of the \(n\)-cube. A path of vertices in the \(n\)-cube is a list of strings of length \(n\) in which adjacent strings differ in a single bit. Using paths of Lyndon words in the \(n\)-cube we construct longer paths of Lyndon words in higher order cubes by shuffling and concatenation.

A.M. Assaf1, W.H. Mills2, R.C. Mullin3
1 Central Michigan University
2Institute for Defense Analyses
3 University of Waterloo
Abstract:

A tricover of pairs by quintuples of a \(v\)-set \(V\) is a family of \(5\)-subsets of \(V\) (called blocks) with the property that every pair of distinct elements from \(V\) occurs in at least three blocks. If no other such tricover has fewer blocks, the tricover is said to be minimum, and the number of blocks in a minimum tricover is the covering number \(C_3(v, 5, 2)\), or simply \(C_3(v)\). It is well known that\(C_3(v) \geq \lceil \frac{{v} \lceil \frac {3(v-1)}{4} \rceil} {5} \rceil = B_3(v)\) , where \(\lceil x \rceil\) is the least integer not less than \(x\). It is shown here that if \(v \equiv 0 \pmod{4}\) and \(v \geq 8\), then \(C_3(v) = B_3(v)\).

Kishore Sinha1, A. D. Das2, Sanpei Kageyama3
1Department of Statistics Birsa Agricultural University Ranchi – 834006, India
2Department of Statistics Bidhan Chandra Krishi Vishwavidyalaya Cooch-Behar – 736101, India
3Department of Mathematics Hiroshima University Shinonome, Hiroshima 734, Japan
Abstract:

The concept of rectangular designs with varying replicates is introduced. A class of such designs is constructed with an example.

Yukio Shibata1, Yasuo Seki2
1 Department of Computer Science Gunma University 1-5-1 Tenjin-cho, Kiryu, Gunma 376 Japan
2NTT Corporation 66-2 Horikawa-cho, Saiwaiku, Kawasaki, Kanagawa, 210 Japan
Abstract:

We study the isomorphic factorization of complete bipartite graphs into trees. It is known that for complete bipartite graphs, the divisibility condition is also a sufficient condition for the existence of isomorphic factorization. We give necessary and sufficient conditions for the divisibility, that is, necessary and sufficient conditions for a pair \([m,n]\) such that \(mn\) is divisible by \((m+n-1)\), and investigate structures of the set of pairs \([m,n]\) satisfying divisibility. Then we prove that the divisibility condition is also sufficient for the existence of an isomorphic tree factor of a complete bipartite graph by constructing the tree dividing \(K({m,n})\).

E-mail Alert

Add your e-mail address to receive upcoming issues of Ars Combinatoria.

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;