Peter Adams1, Elizabeth J.Billington1
1 Department of Mathematics The University of Queensland Queensland 4072 Australia
Abstract:

A decomposition of \(K_v\) into \(2\)-perfect \(8\)-cycles is shown to exist if and only if \(v \equiv 1 (\mod 16\)).

Talmage James Reid1
1 Department of Mathematics The University of Mississippi University, MS U.S.A. 38677
Abstract:

The binary matroids with no three- and four-wheel minors were characterized by Brylawski and Oxley, respectively. The importance of these results is that, in a version of Seymour’s Splitter Theorem, Coullard showed that the three- and four-wheel matroids are the basic building blocks of the class of binary matroids. This paper determines the structure of a class of binary matroids which almost have no four-wheel minor. This class consists of matroids \(M\) having a four-wheel minor and an element \(e\) such that both the deletion and contraction of \(e\) from \(M\) have no four-wheel minor.

Mordechai Lewin 1
1 Department of Mathematics Technion, Israel Institute of Technology Haifa 32000
A.M. Hamel1, W.H. Mills2, R.C. Mullin3, Rolf Rees4, D.R. Stinson 5, Jianxing Yin6
1 Dept. of Combinatorics and Optimization, University of Waterloo, Waterloo, Ont. N2L 3G1i
2Institute for Defense Analyses, Princeton, N.J. 08540
3 Dept. of Combinatorics and Optimization, University of Waterloo, Waterloo, Ont. N2L 3G1
4 Memorial University, St. John’s, Newfoundland
5University of Nebraska, Lincoln, Nebraska
6Dept. of Math, Univ. of Suzhou, Suzhou, 215006, P.R. of China
Abstract:

A pairwise balanced design (PBD) of index \(I\) is a pair \((V,{A})\) where \(V\) is a finite set of points and \(A\) is a set of subsets (called blocks) of \(V\), each of cardinality at least two, such that every pair of distinct points of \(V\) is contained in exactly one block of \(A\). We may further restrict this definition to allow precisely one block of a given size, and in this case the design is called a PBD \((\{K, k^*\},v)\) where \(k\) is the unique block size, \(K\) is the set of other allowable block sizes, and \(v\) is the number of points in the design.

It is shown here that a PBD \((\{5, 9^*\},v)\) exists for all \(v \equiv 9\) or 17 mod 20, \(v \geq 37\), with the possible exception of \(49\), and that a PBD \((\{5, 13^*\},v)\) exists for all \(v \equiv 13 \mod 20\), \(v \geq 53\).

Akira Saito1, Manoru Watanbe2
1 Department of Mathematics Nihon University Sakurajosui 3-25-40 Setagaya-ku, Tokyo 156 JAPAN
2Department of Applied Mathematics Okayama University of Science Ridai-cho 1-1 Okayama-shi, Okayama 700 JAPAN
Abstract:

A partition \(\mathcal{D} = \{V_1, \ldots, V_m\}\) of the vertex set \(V(G)\) of a graph \(G\) is said to be a star decomposition if each \(V_i\) (\(1 \leq i \leq m\)) induces a star of order at least two.
In this note, we prove that a connected graph \(G\) has a star decomposition if and only if \(G\) has a block which is not a complete graph of odd order.

E-mail Alert

Add your e-mail address to receive upcoming issues of Ars Combinatoria.

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;