A. Abdollahi1, H.R. Maimani2
1Department of Mathematics, University of Isfahan, Isfahan, and Institute for Studies in Theoretical Physics and Mathematics (IPM), Tehran, Iran.
2Center of Excellence in Biomathematics, School of Mathematics, Statistics, and Computer Science, University of Tehran, and Institute for Studies in Theoretical Physics and Mathematics (IPM), Tehran, Iran.
Abstract:

We introduce a new technique for constructing pairwise balanced designs and group divisible designs from finite groups. These constructed designs do not yield designs with new parameters, but our construction gives rise to designs having a transitive automorphism group that also preserves the resolution classes.

Xi Yue1, Yang Yuansheng1, Wang Liping1
1Department of Computer Science Dalian University of Technology Dalian, 116024, P. R. China
Abstract:

A shell graph of order \(n\), denoted by \(H(n, n-3)\), is the graph obtained from the cycle \(C_n\) of order \(n\) by adding \(n-3\) chords incident with a common vertex, say \(u\). Let \(v\) be a vertex adjacent to \(u\) in \(C_n\). Sethuraman and Selvaraju \([3]\) conjectured that for all \(k \geq 1\) and for all \(n_i \geq 4\), \(1 \leq i \leq k\), one edge \((uv)\) union of \(k\)-shell graphs \(H(n_i, n_i – 3)\) is cordial. In this paper, we settle this conjecture affirmatively.

Emrah Kilic1
1TOBB Univeasiry of ECONOMICS AND TECHNOLOGY, MATHEMATICS DEPARTMENT, 06560 SO660TOz0, ANKARA TURKEY
Abstract:

In this paper, we give formulas for the sums of generalized order-\(k\) Fibonacci, Pell, and similar other sequences, which we obtain using matrix methods. As applications, we give explicit formulas for the Tribonacci and Tetranacci numbers.

Changqing Xu1, Yatao Du2
1Department of Applied Mathematics, Hebei University of Technology Tianjin, 300130, China
2 Department of Mathematics, Shijiazhuang Mechanical Engineering College Shijiazhuang 050003, China
Abstract:

A \((g, f)\)-coloring is a generalized edge-coloring in which each color appears at each vertex \(v\) at least \(g(v)\) and at most \(f(v)\) times, where \(g(v)\) and \(f(v)\) are nonnegative and positive integers assigned to each vertex \(v\), respectively. The minimum number of colors used by a \((g, f)\)-coloring of \(G\) is called the \((g, f)\)-chromatic index of \(G\). The maximum number of colors used by a \((g, f)\)-coloring of \(G\) is called the upper \((g, f)\)-chromatic index of \(G\). In this paper, we determine the \((g, f)\)-chromatic index and the upper \((g, f)\)-chromatic index in some cases.

B. Manoochehrian1, H. Yousefi-Azari2, A. R. Ashrafi3
1Academic Center for Education, Culture and Research, Tehran Branch, Tehran, 1. R. Iran
2Center of Excellence in Biomathematics, School of Mathematics, Statistics and Computer Science, University of Tehran, Tehran, I. R. Iran
3Department of Mathematics, Faculty of Science, University of Kashan, Kashan 87317-51167, 1. R. Iran
Abstract:

The Szeged index extends the Wiener index for cyclic graphs by counting the number of atoms on both sides of each bond and summing these counts. This index was introduced by Ivan Gutman at the Attila Jozsef University in Szeged in \(1994\), and is thus called the Szeged index. In this paper, we introduce a novel method for enumerating by cuts. Using this method, an exact formula for the Szeged index of a zig-zag polyhex nanotube \(T = TUHC_6{[p,q]}\) is computed for the first time.

Pinar Anapa1, ibrahim Gunaltili1
1Eskisehir Osmangazi University Departmant of Mathematics 26480 Eskisehir-Tiirkiye
Abstract:

In this study, we showed that an \((n+1)\)-regular linear space, which is the complement of a linear space having points not on \(m+1\) lines such that no three are concurrent in a projective subplane of odd order \(m\), \(m \geq 9\), could be embedded into a projective plane of order \(n\) as the complement of Ostrom’s hyperbolic plane.

H. Fujii1, M. Sawa1
1Graduate School of Information Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
Abstract:

For general graphs \(G\), it is known \([6]\) that the minimal length of an addressing scheme, denoted by \(N(G)\), is less than or equal to \(|G| – 1\). In this paper, we prove that for almost all complete bipartite graphs \(K_{m,n}\), \(N(K_{m,n}) = |K_{m,n}| – 2\).

Zongtian Wei1, Shenggeui Zhang2
1Department of Mathematics, Xi’an University of Architecture and Technology, Xi’an, Shaanxi 710055, P.R. China
2Department of Applied Mathematics, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P.R. China
Abstract:

A vertex subversion strategy of a graph \(G\) is a set of vertices \(X \subseteq V(G)\) whose closed neighborhood is deleted from \(G\). The survival subgraph is denoted by \(G/X\). The vertex-neighbor-integrity of \(G\) is defined to be \(VNI(G) = \min\{|X| + r(G/X) : X \subseteq V(G)\},\) where \(r(G/X)\) is the order of a largest component in \(G/X\). This graph parameter was introduced by Cozzens and Wu to measure the vulnerability of spy networks. It was proved by Gambrell that the decision problem of computing the vertex-neighbor-integrity of a graph is NP-complete. In this paper, we evaluate the vertex-neighbor-integrity of the composition graph of two paths.

M.M. Shikare1, B.N. Waphare 1
1Department of Mathematics University of Pune, Pune – 411007 (India)
Abstract:

In this paper, we prove that a matroid with at least two elements is connected if and only if it can be obtained from a loop by a nonempty sequence of non-trivial single-element extensions and series extensions.

Pierre Ille1, William Kocay2
1Institut de Mathémathiques de Luminy CNRS — UMR 6206 163 avenue de Luminy, Case 907 13288 Marseille Cedex 9, France
2Computer Science Department St. Paul’s College, University of Manitoba Winninpeg, MB, Canada R3T 2N2
Abstract:

Let \(G\) and \(H\) be graphs with a common vertex set \(V\), such that \(G – i \cong H – i\)for all \(i \in V\). Let \(p_i\) be the permutation of \(V – i\) that maps \(G – i\) to \(H – i\), and let \(q_i\) denote the permutation obtained from \(p_i\) by mapping \(i\) to \(i\). It is shown that certain algebraic relations involving the edges of \(G\) and the permutations \(q_iq_j^{-1}\) and \(q_iq_k^{-1}\), where \(i, j, k \in V\) are distinct vertices, often force \(G\) and \(H\) to be isomorphic.

Tan Mingshu1
1Department of Mathematics, Chongqing Three Gorges University, Chongqing Wanzhou 404000, People’s Republic of China
Abstract:

The factorization of matrix \(A\) with entries \(a_{i,j}\) determined by \(a_{i,j} = \alpha a_{i-1,j-1} + \beta a_{i,j-1}\) is derived as \(A = TP^T\). An interesting factorization of matrix \(B\) with entries \(b_{i,j} = \alpha b_{i-1,j} + \beta b_{i,j-1}\) is given by \(B = P[\alpha]TP^{T}[\beta]\). The beautiful factorization of matrix \(C\) whose entries satisfy \(c_{i,j} = \alpha c_{i-1,j} + \beta c_{i-1,j-1} + Ye_{i-1,j-1}\) is founded to be \(C = P[\alpha]DP^T[\beta]\), where \(T\) is a Toeplitz matrix, and \(P\) and \(P[\alpha]\) are Pascal matrices. The matrix product factorization to the problem is solved perfectly so far.

D. Bauer1, N. Kahl2, L. Mcguire3, E. Schmeichel4
1Department of Mathematical Sciences Stevens Institute of Technology Hoboken, NJ 07030
2 Department of Mathematics and Computer Science Seton Hall University South Orange, NJ 07079
3Department of Mathematical Sciences Muhlenberg College Allentown, PA 18104
4 Department of Mathematics San Jose State University San Jose, CA 95192
Abstract:

Dirac showed that a \(2\)-connected graph of order \(n\) with minimum degree \(\delta\) has circumference at least \(\min\{2\delta, n\}\). We prove that a \(2\)-connected, triangle-free graph \(G\) of order \(n\) with minimum degree \(\delta\) either has circumference at least \(\min\{4\delta – 4, n\}\), or every longest cycle in \(G\) is dominating. This result is best possible in the sense that there exist bipartite graphs with minimum degree \(\delta\) whose longest cycles have length \(4\delta – 4\), and are not dominating.

Jian-Liang Wu 1, Yu-Liang Wu2
1School of Mathematics, Shandong University, Jinan, 250100, China
2Department of Computer Science and Engineering The Chinese University of Hong Kong, Hong Kong
Abstract:

The vertex linear arboricity \(vla(G)\) of a graph \(G\) is the minimum number of subsets into which the vertex set \(V(G)\) can be partitioned so that each subset induces a subgraph whose connected components are paths. It is proved here that \(\lceil \frac{\omega(G)}{2}\rceil \leq vla(G) \leq \lceil \frac{\omega(G)+1}{2}\rceil\) for a claw-free connected graph \(G\) having \(\Delta(G) \leq 6\), where \(\omega(G)\) is the clique number of \(G\).

H.W. Gould1
1Department of Mathematics West Virginia University, PO Box 6310 Morgantown, WV 26506-6310
Xia Zhang1, Jihui Wang 2, Guizhen Liu 2
1School of Mathematics and System Science Shandong University Jinan, Shandong 250100, P.R.China
2 School of Mathematics and System Science Shandong University Jinan, Shandong 250100, P.R.China
Abstract:

An \(f\)-coloring of a graph \(G\) is a coloring of edges of \(E(G)\) such that each color appears at each vertex \(v \in V(G)\) at most \(f(v)\) times. The minimum number of colors needed to \(f\)-color \(G\) is called the \(f\)-chromatic index of \(G\) and denoted by \(\chi’_f(G)\). Any simple graph \(G\) has the \(f\)-chromatic index equal to \(\Delta_f(G)\) or \(\Delta_f(G) + 1\), where \(\Delta_f(G) = \max_{v \in V}\{\lceil \frac{d(v)} {f(v)}\rceil\}\). If \(\chi’_f(G) = \Delta_f(G)\), then \(G\) is of \(C_f\) \(1\); otherwise \(G\) is of \(C_f\) \(2\). In this paper, two sufficient conditions for a regular graph to be of \(C_f\) \(1\) or \(C_f\) \(2\) are obtained and two necessary and sufficient conditions for a regular graph to be of \(C_f\) \(1\) are also presented.

Sin-Min Lee1, Ho Kuen Ng2
1Department of Computer Science San Jose State University San Jose, CA 95192, USA
2Department of Mathematics San Jose State University San Jose, CA 95192, USA
Abstract:

Let \(G\) be a graph with vertex set \(V(G)\) and edge set \(E(G)\), and let \(A\) be an abelian group. A labeling \(f: V(G) \to A\) induces an edge labeling \(f^*: E(G) \to A\) defined by \(f^*(xy) = f(x) + f(y)\), for each edge \(xy \in E(G)\). For \(i \in A\), let \(v_f(i) = \text{card}\{v \in V(G): f(v) = i\}\) and \(e_f(i) = \text{card}\{e \in E(G): f^*(e) = i\}\). Let \(c(f) = \{|e_f(i) – e_f(j)|: (i,j) \in A \times A\}\). A labeling \(f\) of a graph \(G\) is said to be \(A-friendly\) if \(|v_f(i) – v_f(j)| \leq 1\) for all \((i,j) \in A \times A\). If \(c(f)\) is a \((0,1)\)-matrix for an \(A\)-friendly labeling \(f\), then \(f\) is said to be \(A\)-cordial. When \(A = \mathbb{Z}_2\), the \({friendly index set}\) of the graph \(G\), \(FI(G)\), is defined as \(\{|e_f(0) – e_f(1)|: \text{the vertex labeling } f \text{ is } \mathbb{Z}_2\text{-friendly}\}\). In this paper, we determine the friendly index set of cycles, complete graphs, and some bipartite graphs.

Takaaki Hishida1, Masakazu Jimbo2, Miwako Mishima3, Yukiyasu Mutoh2, Kazuhiro Ozawa4
1Department of Information Network Engineering Aichi Institute of Technology Toyota 470-0392, Japan
2Graduate School of Information Science Nagoya University Nagoya 464-8601, Japan
3Information and Multimedia Center Gifu University Gifu 501-1193, Japan
4Gifu College of Nursing Hashima 501-6295, Japan
Abstract:

In this paper, several constructions are presented for balanced incomplete block designs with nested rows and columns. Some of them refine theorems due to Hishida and Jimbo \([6]\) and Uddin and Morgan \([17]\), and some of them give parameters which have not been available before.

Zhong-fu Zhang1,2, Mu-chun Li1, Bing Yao3, Bo-gen Xu4, Zhi-wen Wang5, Jing-wen Li1
1Institute of Applied Mathematics, Lanzhou Jiaotong University, Lanzhou 730070 P.R. China
2College of Mathematics and Information Science, Northwest Normal University, Lanzhou 730070, P.R. Chinazhagn_zhong-fu@yahoo.com.cn
3College of Mathematics and Information Science, Northwest Normal University, Lanzhou 730070, P.R. China
4Department of Mathematics, Huadong jiaotong University, Nanchang 330013, P.R. China
5Department of Mathematics of Yeungnam university, Daedong, Kyongsan, Kyongbuk 712-749, Korea
Abstract:

A vertex-distinguishing edge-coloring (VDEC) of a simple graph \(G\) which contains no more than one isolated vertex and no isolated edge is equitable (VDEEC) if the absolute value of the difference between the number of edges colored by color \(i\) and the number of edges colored by color \(j\) is at most one. The minimal number of colors needed such that \(G\) has a VDEEC is called the vertex-distinguishing equitable chromatic index of \(G\). In this paper, we propose two conjectures after investigating VDEECs on some special families of graphs, such as the stars, fans, wheels, complete graphs, complete bipartite graphs, etc.

Joan Gimbert1, Nacho Lopez2
1 Departament de Matematica Universitat de Lleida, 25001 Lleida, Spain
2Departament de Matematica Universitat de Lleida, 25001 Lleida, Spain
Abstract:

The eccentricity \(e(v)\) of a vertex \(v\) in a strongly connected digraph \(G\) is the maximum distance from \(v\). The eccentricity sequence of a digraph is the list of eccentricities of its vertices given in non-decreasing order. A sequence of positive integers is a digraphical eccentric sequence if it is the eccentricity sequence of some digraph. A set of positive integers \(S\) is a digraphical eccentric set if there is a digraph \(G\) such that \(S = \{e(v), v \in V(G)\}\). In this paper, we present some necessary and sufficient conditions for a sequence \(S\) to be a digraphical eccentric sequence. In some particular cases, where either the minimum or the maximum value of \(S\) is fixed, a characterization is derived. We also characterize digraphical eccentric sets.

Shung-Liang Wu1, Hui-Chuan Lu1
1National United University Miaoli, Taiwan, R.O.C.
Abstract:

Let \(C_m\) be a cycle on \(m (\geq 3)\) vertices and let \(\ominus_{n-m}C_m\) denote the class of graphs obtained from \(C_m\) by adding \(n-m (\geq 1)\) distinct pendent edges to the vertices of \(C_m\). In this paper, it is proved that for every \(T\) in \(\ominus_{n-m}C_m\), the complete graph \(K_{2n+1}\) can be cyclically decomposed into the isomorphic copies of \(T\). Moreover, if \(m\) is even, then for every positive integer \(p\), the complete graph \(K_{2pn+1}\) can also be cyclically decomposed into the isomorphic copies of \(T\).

Sang-Mok Kim1
1DIVISION OF GENERAL EDUCATION – MATHEMATICS KWANGWOON UNIVERSITY SEOUL 139-701, KOREA
Abstract:

An aperiodic perfect map (APM) is an array with the property that each possible array of a given size, called a window, arises exactly once as a contiguous subarray in the array. In this paper, we give a construction method of an APM being a proper concatenation of some fragments of a given de Bruijn sequence. Firstly, we give a criterion to determine whether a designed sequence \(T\) with entries from the index set of a de Bruijn sequence can generate an APM. This implies a sufficient condition for being an APM. Secondly, two infinite families of APMs are given by constructions of corresponding sequences \(T\), respectively, satisfying the criterion.

Yusuf Civan1
1DEPARTMENT OF MATHEMATICS, SULEYMAN DEMIREL UNIVERSITY, ISPARTA, 32260, TURKEY.
Abstract:

We introduce a combinatorial shifting operation on multicomplexes that carries similar properties required for the ordinary shifting operation on simplicial complexes. A linearly colored simplicial complex is called shifted if its associated multicomplex is stable under defined operation. We show that the underlying simplicial subcomplex of a linearly shifted simplicial complex is shifted in the ordinary sense, while the ordinary and linear shiftings are not interrelated in general. Separately, we also prove that any linearly shifted complex must be shellable with respect to the order of its facets induced by the linear coloring. As an application, we provide a characterization of simple graphs whose independence complexes are linearly shifted. The class of graphs obtained constitutes a superclass of threshold graphs.

H.W. Gould1
1Department of Mathematics West Virginia University, PO Box 6310 Morgantown, WV 26506-6310
Behnaz Omoomi1, Ali Pourmiri1
1Department of Mathematical Sciences Isfahan University of Technology 84156-83111, Isfahan, Iran
Abstract:

A local coloring of a graph \(G\) is a function \(c: V(G) \to \mathbb{N}\) having the property that for each set \(S \subseteq V(G)\) with \(2 \leq |S| \leq 3\), there exist vertices \(u,v \in S\) such that \(|c(u) – c(v)| \geq m_S\), where \(m_S\) is the size of the induced subgraph \(\langle S\rangle\). The maximum color assigned by a local coloring \(c\) to a vertex of \(G\) is called the value of \(c\) and is denoted by \(\chi_\ell(c)\). The local chromatic number of \(G\) is \(\chi_\ell(G) = \min\{\chi_\ell(c)\}\), where the minimum is taken over all local colorings \(c\) of \(G\). If \(\chi_\ell(c) = \chi_\ell(G)\), then \(c\) is called a minimum local coloring of \(G\). The local coloring of graphs introduced by Chartrand et al. in \(2003\). In this paper, following the study of this concept, first an upper bound for \(\chi_\ell(G)\) where \(G\) is not complete graphs \(K_4\) and \(K_5\), is provided in terms of maximum degree \(\Delta(G)\). Then the exact value of \(\chi_\ell(G)\) for some special graphs \(G\) such as the cartesian product of cycles, paths and complete graphs is determined.

Anuradha Sharma1, Gurmeet K.Bakshi1, V.C. Dumir1, Madhu Raka1
1Centre for Advanced Study in Mathematics Panjab University Chandigarh INDIA
Abstract:

Explicit expressions for all the primitive idempotents in the ring \(R_{2^n} = {F}_q[x]/(x^{2^n} – 1)\), where \(q\) is an odd prime power, are obtained. Some lower bounds on the minimum distances of the irreducible cyclic codes of length \(2^n\) over \({F}_q\) are also obtained.

A. Abdollahi1
1DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ISFAHAN, ISFAHAN 81746-71441, IRAN; AND INSTITUTE FOR STUDIES IN THEORETICAL PHYSICS AND MATHEMATICS (IPM); TEHRAN, IRAN.
Abstract:

In this note we prove that all connected Cayley graphs of every finite group \(Q \times H\) are \(1\)-factorizable, where \(Q\) is any non-trivial group of \(2\)-power order and \(H\) is any group of odd order.

Xi Yue1, Yang Yuansheng1, Mominul 1, Wang Liping1
1Department of Computer Science Dalian University of Technology Dalian, 116024, P. R. China
Abstract:

A graph \(G\) is called super vertex-magic total labelings if there exists a bijection \(f\) from \(V(G) \cup E(G)\) to \(\{1,2,\ldots,|V(G)| + |E(G)|\}\) such that \(f(v) + \sum_{u \sim v} f(vu) = C\), where the sum is over all vertices \(u\) adjacent to \(v\) and \(f(V(G)) = \{1,2,\ldots,|V(G)|\}\), \(f(E(G)) = \{|V(G)|+1,|V(G)|+2,\ldots,|V(G)|+|E(G)|\}\). \({The Knödel graphs}\) \(W_{\Delta,n}\) have even \(n \geq 2\) vertices and degree \(\Delta\), \(1 \leq \Delta \leq \lfloor\log_2 n\rfloor\). The vertices of \(W_{\Delta,n}\) are the pairs \((i,j)\) with \(i = 1,2\) and \(0 \leq i \leq n/2-1\). For every \(j\), \(0 \leq j \leq n/2-1\), there is an edge between vertex \((1,j)\) and every vertex \((2,(j+2^k-1) \mod (n/2))\), for \(k=0,\ldots,\Delta-1\). In this paper, we show that \(W_{3,n}\) is super vertex-magic for \(n \equiv 0 \mod 4\).

Pu-yan Nie1,2,3
1College of Economics and Trade, Hunan University, Changsha,410079,P.R.China.
2Department of Mathematics, Jinan University, Guangzhou, 510632, P.R.China
3This work is partially supported by National Natural Science Foundation of China
Abstract:

Evolutionary graphs were initially proposed by Lieberman \(et \;al\). and evolutionary dynamics on two levels are recently introduced by Traulsen et al. We now introduce a new type of evolutionary dynamics,evolutionary graphs on two levels, and the fixation probability is analyzed. Some interesting results, evolutionary graphs on two levels are more stable than single level evolutionary graphs, are obtained in this paper.

Dariusz Dereniowski1
1Department of Algorithms and System Modeling, Gdazsisk University of Technology, Poland
Abstract:

A vertex \(k\)-ranking of a graph \(G\) is a function \(c: V(G) \to \{1,\ldots,k\}\) such that if \(c(u) = c(v)\), \(u,v \in V(G)\), then each path connecting vertices \(u\) and \(v\) contains a vertex \(w\) with \(c(w) > c(u)\). If each vertex \(v\) has a list of integers \(L(v)\) and for a vertex ranking \(c\) it holds \(c(v) \in L(v)\) for each \(v \in V(G)\), then \(c\) is called an \(L\)-list \(k\)-ranking, where \(\mathcal{L} = \{L(v) : v \in V(G)\}\). In this paper, we investigate both vertex and edge (vertex ranking of a line graph) list ranking problems. We prove that both problems are NP-complete for several classes of acyclic graphs, like full binary trees, trees with diameter at most \(4\), and comets. The problem of finding vertex (edge) \(\mathcal{L}\)-list ranking is polynomially solvable for paths and trees with a bounded number of non-leaves, which includes trees with diameter less than \(4\).

Miroslav Petrovic1, Bojana Borovicanin1
1Faculty of Science, University of Kragujevac, Radoja Do- manoviéa 12, 84000 Kragujevac, Serbia and Montenegro
Abstract:

In this paper we determine unique graph with largest spectral radius among all tricyclic graphs with \(n\) vertices and \(k\) pendant edges.

Wei-Fan Wang1, Ko-Wei Lih2
1Department of Mathematics, Zhejiang Normal University Jinhua 321004, P. R. China
2Institute of Mathematics, Academia Sinica Nankang, Taipei 115, Taiwan
Abstract:

A new proof is given to the following result of ours. Let \(G\) be an outerplanar graph with maximum degree \(\Delta \geq 3\). The chromatic number \(\chi(G^2)\) of the square of \(G\) is at most \(\Delta+2\), and \(\chi(G^2) = \Delta+1\) if \(\Delta \geq 7\).

M.R. Darafsheh1, A.R. Ashrafi2, M. Khademi3
1Department of Mathematics, Statistics and Computer Science, Faculty of Science, University of Tehran, Tehran, Iran.
2Department of Mathematics, Faculty of Science, University of Kashan, Kashan, Iran.
3Islamic Azad University, South Tehran Branch, Tehran, Iran.
Abstract:

Some designs using the action of the linear fractional groups \(L_2(q)\), \(q = 11, 13, 16, 17, 19, 23\) are constructed. We will show that \(L_2(q)\) or its automorphism group acts as the full automorphism group of each of the constructed designs except in the case \(q = 16\). For designs constructed from \(L_2(16)\), we will show that \(L_2(16)\), \(L_2(16) : 2\), \(L_2(16) : 4\) or \(S_{17}\) can arise as the full automorphism group of the design.

Zheng Wenping1,2, Lin Xiaohui3, Yang Yuansheng3, Yang Xiwu1
1Department of Computer Science, Dalian University of Technology, Dalian, 116024, P. R. China
2School of Computer and Information Technology, Shanxi University, Taiyuan, 030006, P. R. China,
3 Department of Computer Science, Dalian University of Technology, Dalian, 116024, P. R. China
Abstract:

For odd \(n \geq 5\), the Flower Snark \(F_n = (V, E)\) is a simple undirected cubic graph with \(4n\) vertices, where \(V = \{a_i : 0 \leq i \leq n-1\} \cup \{b_i : 0 \leq i \leq n-1\} \cup \{c_i : 0 \leq i \leq 2n-1\}\) and \(E = \{b_ib_{(i+1)\mod(n)}: 0 \leq i \leq n-1\} \cup \{c_ic_{(i+1)\mod(2n)} : 0 \leq i \leq 2n-1\} \cup \{a_ib_i,a_ic_i,a_ic_{n+i} : 0 \leq i \leq n-1\}\). For \(n = 3\) or even \(n \geq 4\), \(F_n\) is called the related graph of Flower Snark. We show that the crossing number of \(F_n\) equals \(n – 2\) if \(3 \leq n \leq 5\), and \(n\) if \(n \geq 6\).

Huajun Tang1, Yaojun Chen1
1Department of Mathematics, Nanjing University, Nanjing 210093, P.R. CHINA
Abstract:

A subset \(S\) of the vertex set of a graph \(G\) is called acyclic if the subgraph it induces in \(G\) contains no cycles. We call \(S\) an acyclic dominating set if it is both acyclic and dominating. The minimum cardinality of an acyclic dominating set, denoted by \(\gamma_a(G)\), is called the acyclic domination number of \(G\). A graph \(G\) is \({2-diameter-critical}\) if it has diameter \(2\) and the deletion of any edge increases its diameter. In this paper, we show that for any positive integers \(k\) and \(d \geq 3\), there is a \(2\)-diameter-critical graph \(G\) such that \(\delta(G) = d\) and \(\gamma_a(G) – \delta(G) \geq k\), and our result answers a question posed by Cheng et al. in negative.

Wayne Goddard1, Sandra M.Hedetniemi2, Stephen T.Hedetniemi3, John M.Harris4, Douglas F.Rall4
1Dept of Computer Science, Clemson University, Clemson SC 29634-0974, USA
2Clemson University
3Clemson UniversityJohn M. Harris
4Furman University
Abstract:

A function \(f: V \to \{1,\ldots,k\}\) is a broadcast coloring of order \(k\) if \(\pi(u) = \pi(v)\) implies that the distance between \(u\) and \(v\) is more than \(\pi(u)\). The minimum order of a broadcast coloring is called the broadcast chromatic number of \(G\), and is denoted \(\chi_b(G)\). In this paper we introduce this coloring and study its properties. In particular, we explore the relationship with the vertex cover and chromatic numbers. While there is a polynomial-time algorithm to determine whether \(\chi_b(G) \leq 3\), we show that it is \(NP\)-hard to determine if \(\chi_b(G) \leq 4\). We also determine the maximum broadcast chromatic number of a tree, and show that the broadcast chromatic number of the infinite grid is finite.

Xu Xirong1, Yang Yuansheng1, Xi Yue1, Li Huijun1
1Department of Computer Science Dalian University of Technology Dalian, 116024, P. R. China
Abstract:

A connected graph \(G = (V, E)\) is said to be \((a,d)\)-antimagic if there exist positive integers \(a,d\) and a bijection \(f : E \to \{1,2,\ldots,|E|\}\) such that the induced mapping \(g_f : V \to \mathbb{N}\), defined by \(g_f(v) = \sum f(uv)\),\({uv \in E(G)}\) is injective and \(g_f(V) = \{a,a+d,\ldots,a+(|V|-1)d\}\). Mirka Miller and Martin Bača proved that the generalized Petersen graph \(P(n, 2)\) is \((\frac{3n+6}{2}, 3)\)-antimagic for \(n \equiv 0 \pmod{4}\), \(n \geq 8\) and conjectured that the generalized Petersen graph \(P(n, k)\) is \((\frac{3n+6}{2}, 3)\)-antimagic for even \(n\) and \(2 \leq k \leq \frac{n}{2}-1\). In this paper, we show that the generalized Petersen graph \(P(n, 3)\) is \((\frac{3n+6}{2}, 3)\)-antimagic for even \(n \geq 8\).

Emrah Kilic1
1TOBB Economics AND TECHNOLOGY UNIVERSITY MATHEMATICS DEPARTMENT 06560 SOGCTOzZO ANKARA TURKEY
Abstract:

In this paper, we derive new recurrence relations and generating matrices for the sums of usual Tribonacci numbers and \(4n\) subscripted Tribonacci sequences, \(\{T_{4n}\}\), and their sums. We obtain explicit formulas and combinatorial representations for the sums of terms of these sequences. Finally, we represent relationships between these sequences and permanents of certain matrices.

Yidong Sun1
1Department of Applied Mathematics, Dalian University of Technology : Dalian 116024, P.R.China
Abstract:

Let \(\mathcal{K} = (K_{ij})\) be an infinite lower triangular matrix of non-negative integers such that \(K_{i0} = 1\) and \(K_{ii} \geq 1\) for \(i \geq 0\). Define a sequence \(\{V_i(\mathcal{K})\}_{m\geq0}\) by the recurrence \(V_{i+1}(\mathcal{K}) = \sum_{j=0}^m K_{mj}V_j(\mathcal{K})\) with \(V_0(\mathcal{K}) = 1\). Let \(P(n;\mathcal{K})\) be the number of partitions of \(n\) of the form \(n = p_1 + p_2 + p_3 + p_4 + \cdots\) such that \(p_j \geq \sum_{i\geq j} K_{ij}p_{i+1}\) for \(j \geq 1\) and let \(P(n;V(\mathcal{K}))\) denote the number of partitions of \(n\) into summands in the set \(V(\mathcal{K}) = \{V_1(\mathcal{K}), V_2(\mathcal{K}), \ldots\}\). Based on the technique of MacMahon’s partitions analysis, we prove that \(P(n;\mathcal{K}) = P(n;V(\mathcal{K}))\) which generalizes a recent result of Sellers’. We also give several applications of this result to many classical sequences such as Bell numbers, Fibonacci numbers, Lucas numbers, and Pell numbers.

E-mail Alert

Add your e-mail address to receive upcoming issues of Ars Combinatoria.

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;