You Gao1, Gang Wang1, Yifan He1
1College of Science, Civil Aviation University of China, Tianjin 300300, P.R.China
Abstract:

Multisender authentication codes allow a group of senders to construct an authenticated message for a receiver such that the receiver can verify authenticity of the received message. In this paper, a new multisender authentication codes with simultaneous model is constructed base on singular symplectic geometry over finite fields. The parameters and the maximum probabilities of deceptions are also computed.

Jyhmin Kuo1, Hung-Lin Fu2
1Chen-De Senior High School, Hsin Chu, Taiwan 30047;
2Department of Applied Mathematics, National Chiao Tung University, Hsin Chu, Taiwan 30050;
Abstract:

Let \(D = (V, A)\) be a digraph with vertex set \(V\) and arc set \(A\). An absorbant of \(D\) is a set \(S \subseteq V\) such that for each \(v \in V \setminus S\), \(O(v) \cap S \neq \emptyset\), where \(O(v)\) is the out-neighborhood of \(v\). The absorbant number of \(D\), denoted by \(\gamma_a(D)\), is defined as the minimum cardinality of an absorbant of \(D\). The generalized de Bruijn digraph \(G_B(n, d)\) is a digraph with vertex set \(V(G_B(n, d)) = \{0, 1, 2, \ldots, n-1\}\) and arc set \(A(G_B(n, d)) = \{(x, y) \mid y = dx + i \, (\text{mod} \, n), 0 \leq i < d\}\). In this paper, we determine \(\gamma_a(G_B(n, d))\) for all \(d \leq n \leq 4d\).

Sabrina X.M.Pang1, Lun Lv2
1College of Mathematics and Statistics Hebei University of Economics and Business, Shijiazhuang 050061, P.R. China
2School of Sciences Hebci University of Science and Technology, Shijiazhuang 050018, P.R. China
Abstract:

We provide a concise combinatorial proof for the solution of the general two-term recurrence \(u(n, k) = u(n-1, k-1) + (a_{n-1}+b_{k})u(n-1, k)\), initially discovered by Mansour et al. \([4]\).

Tufan Turaci1, Mukaddes Oten2
1 DEPARTMENT OF MATIRMATICS, FACULTY OF SCIENCE, Karantk UNIVERSITY TBLOO, KARABUK/ TURKEY
2 DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, EcE UNIVERSITY 35100, Tem /Treney
Abstract:

The vulnerability value of a communication network is the resistance of this communication network until some certain stations or communication links between these stations are disrupted and, thus communication interrupts. A communication network is modeled by a graph to measure the vulnerability as stations corresponding to the vertices and communication links corresponding to the edges, There are several types of vulnerability parameters depending upon the distance for each pair of two vertices. In this paper. closeness, vertex residual closeness (\(VRC\)) and normalized vertex residual closeness (\(NV RC\)) of some Mycielski graphs are calculated, furthermore upper and lower bounds are obtained.

Jianglu Wang1, Lei Mou1
1School of Mathematical Sciences, Shandong Normal University, Jinan 250014, China
Abstract:

A graph \(G\) is an {\([s, t]\)-graph if every subgraph induced by \(s\) vertices of \(G\) has at least \(t\) edges. This concept extends the independent number. In this paper, we prove that:

(1) if \(G\) is a \(k\)-connected \([k+2, 2]\)-graph, then \(G\) has a Hamilton cycle or \(G\) is isomorphic to the Petersen graph or \(\overline{K_{k+1}} \vee G_k\),

(2) if \(G\) is a \(k\)-connected \([k+3, 2]\)-graph, then \(G\) has a Hamilton path or \(G\) is isomorphic to \(\overline{K_{k+1}} \vee G_k\),
where \(G_r\) is an arbitrary graph of order \(k\). These two results generalize the following known results obtained by Chvátal-Erdős and Bondy, respectively:

(a) if \(\alpha(G)\leq \kappa(G) \) of order \(n \geq 3\), then \(G\) has a Hamilton cycle,

(b) if \(\alpha(G) – 1 \leq \kappa(G)\) , then \(G\) has a Hamilton path.

Urszula Bednarz1, Dorota Bréd1, Iwona Wioch1, Malgorzata Wolowiec-Musial1
1Rzeszéw University of Technology Faculty of Mathematics and Applied Physics al. Powstaricow Warszawy 12, 35-959 Rzeszdw, Poland
Abstract:

In this paper we define new generalizations of Fibonacci numbers and Lucas numbers in the distance sense. These generalizations are closely related to the concept of \((2,k )\)-distance Fibonacci numbers presented in \([10]\). We show some applications of these numbers in number decompositions and we also define a new type of Lucas numbers.

Xiaoxiao Duan1,2, Kefeng Diao1, Fuliang Lu1, Xiao Zhu1,2
1School of Science, Linyi University, Linyi, Shandong, 276005, China
2School of Mathematical Science, Shandong Normal University, Jinan, Shandong, 250014, China
Abstract:

For a vector \({R} = (r_1, r_2, \ldots, r_m)\) of non-negative integers, a mixed hypergraph \(\mathcal{H}\) is a realization of \({R}\) if its chromatic spectrum is \({R}\). In this paper, we determine the minimum number of vertices of realizations of a special kind of vectors \({R}_2\). As a result, we partially solve an open problem proposed by Král in \(2004\).

Keaitsuda Nakprasit1, Kittikorn Nakprasit1
1Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
Abstract:

A strong edge-coloring is a proper edge-coloring such that two edges with the same color are not allowed to lie on a path of length three. The strong chromatic index of a graph \(G\), denoted by \(s'(G)\), is the minimum number of colors in a strong edge-coloring. We denote the degree of a vertex \(v\) by \(d(v)\). Let the \({Ore-degree}\) of a graph \(G\) be the maximum value of \(d(u) + d(v)\), where \(u\) and \(v\) are adjacent vertices in \(G\). Let \(F_3\) denote the graph obtained from a \(5\)-cycle by adding a new vertex and joining it to a pair of nonadjacent vertices of the \(5\)-cycle. In \(2008\), Wu and Lin [J. Wu and W. Lin, The strong chromatic index
of a class of graphs, Discrete Math., \(308 (2008), 6254-6261]\) studied the strong chromatic index with respect to the Ore-degree. Their main result states that if a connected graph \(G\) is not \(F_3\) and its Ore-degree is \(5\), then \(s'(G) \leq 6\). Inspired by the result of Wu and Lin, we investigate the strong edge-coloring of graphs with Ore-degree 6. We show that each graph \(G\) with Ore-degree \(6\) has \(s'(G) \leq 10\). With the further condition that \(G\) is bipartite, we have \(s'(G) \leq 9\). Our results give general forms of previous results about strong chromatic indices of graphs with maximum degree \(3\).

Jen-Ling Shang1
1 Department of Banking and Finance, Kainan University Tao-Yuan, Taiwan 33857, R.O.C.
Abstract:

For a graph \(G\), an edge labeling of \(G\) is a bijection \(f: E(G) \to \{1, 2, \ldots, |E(G)|\}\). The \emph{induced vertex sum} \(f^*\) of \(f\) is a function defined on \(V(G)\) given by \(f^+(u) = \sum_{uv \in E(G)} f(uv)\) for all \(u \in V(G)\). A graph \(G\) is called \emph{antimagic} if there exists an edge labeling of \(G\) such that the induced vertex sum of the edge labeling is injective. Hartsfield and Ringel conjectured in 1990 that all connected graphs except \(K_2\) are antimagic. A spider is a connected graph with exactly one vertex of degree exceeding \(2\). This paper shows that all spiders are antimagic.

Y.M. Borse1, M.M. Shikare1, Naiyer Pirouz1
1Department of Mathematics, University of Pune, Pune 411007 (India)
Abstract:

In this paper, we consider the problem of determining precisely which graphic matroids \(M\) have the property that the splitting operation,by every pair of elements, on \(M\) yields a cographic matroid. This problem is solved by proving that there are exactly three minorminimal graphs that do not have this property.

Dae San Kim1, Taekyun Kim2
1DEPARTMENT OF MATHEMATICS, SOGANG UNIVERSITY, SEOUL 121-742, REPUBLIC OF KOREA
2DEPARTMENT OF MATHEMATICS, KWANGWOON UNIVERSITY, SEOUL 139-701, RepuB- LIC OF KOREA
Abstract:

In this paper, we give a new and interesting identities of Boole and Euler polynomials which are derived from the symmetry properties of the \(p\)-adic fermionic integrals on \(\mathbb{Z}_p\).

Rita SahaRay1, Ilene H.Morgan2
1Applied Statistics Division, Indian Statistical Institute, 203 B. T. Road, Kolkata-700 108, India.
2Department of Mathematics and Statistics, Missouri University of Science and Technology, Rolla, MO 65409, USA
Abstract:

In this paper we address the problem of construction of critical sets
in \(F\)-squares of the form \(F(2n; 2, 2,……… ,2)\). We point out that the
critical set in \(F(2n; 2,2, ……… ,2)\) obtained by Fitina, Seberry and
Sarvate \((1999)\) is not correct and prove that in the given context a
proper subset is a critical set.

Qiong Fan1,2, Shuchao Li2
1School of Automation, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
2Faculty of Mathematics and Statistics, Central China Normal University, Wuhan 430079, P.R. China
Abstract:

A connected graph \(G = (V(G), E(G))\) is called a quasi-tree graph if there exists a vertex \(u_0 \in V(G)\) such that \(G – u_0\) is a tree. Let \(\mathcal{P}(2k) := \{G: G \text{ is a quasi-tree graph on } 2k \text{ vertices with perfect matching}\}\), and \(\mathcal{P}(2k, d_0) := \{G: G \in \mathcal{P}(2k), \text{ and there is a vertex } u_0 \in V(G) \text{ such that } G – u_0 \text{ is a tree with } d_G(u_0) = d_0\}\). In this paper, the maximal indices of all graphs in the sets \(\mathcal{P}(2k)\) and \(\mathcal{P}(2k, d_0)\) are determined, respectively. The corresponding extremal graphs are also characterized.

Luis Gonzdlez1, Angelo Santana1
1Department of Mathematics, University of Las Palmas de Gran Canaria Campus de Tafira, 35017 Las Palmas de Gran Canaria, Spain
Abstract:

A combinatorial sum for the Stirling numbers of the second kind is generalized. This generalization provides a new explicit formula for the binomial sum \(\sum_{k=0}^{n}k^ra^kb^{n-k} \binom{n}{k}\), where \(a, b \in \mathbb{R} – \{0\}\) and \(n, r \in \mathbb{N}\). As relevant special cases, simple explicit expressions for both the binomial sum \(\sum_{k=0}^{n} k^r\binom{n}{k} \) and the raw moment of order \(r\) of the binomial distribution \(B(n, p)\) are given. All these sums are expressed in terms of generalized \(r\)-permutations.

Yahui Hu1, Yaoping Hou1, Zhangdong Ouyang1
1Department of Mathematics, Hunan First Normal University, Changsha 410205, P.R.China
Abstract:

Let \(G\) be a simple connected graph with vertex set \(V(G)\). The Gutman index \(\text{Gut}(G)\) of \(G\) is defined as \(\text{Gut}(G) = \sum\limits_{\{x,y\} \subseteq V(G)} d_G(x) d_G(y) d_G(x,y)\), where \(d_G(x)\) is the degree of vertex \(v\) in \(G\) and \(d_G(x,y)\) is the distance between vertices \(x\) and \(y\) in \(G\). In this paper, the second-minimum Gutman index of unicyclic graphs on \(n\) vertices and girth \(m\) is characterized.

Tanawat Wichianpaisarn1, Chariya Uiyyasathian1
1Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Payathai Rd., Bangkok, 10330, Thailand
Abstract:

The clique-chromatic number of a graph is the least number of colors on the vertices of the graph without a monocolored maximal clique of size at least two.In \(2004\), Bacsé et al. proved that the family of line graphs has no bounded clique-chromatic number. In particular, the Ramsey numbers provide a sequence of the line graphs of complete graphs with no bounded clique-chromatie number. We
complete this result by giving the exact values of the clique-chromatic numbers of the line graphs of complete graphs in terms of Ramsey numbers. Furthermore, the clique-chromatic numbers of the line graphs of triangle-free graphs are characterized.

Kamil Ari1
1Karamanoglu Mehmetbey University, Faculty of Kamil Ozdag Science, Department of Mathematics, 70100 Karaman, Turkey
Abstract:

The current article focuses on the generalized \(k\)-Pell \((p, i)\)-numbers for \(k = 1, 2, \ldots\) and \(0 \leq i \leq p\). It introduces the generalized \(k\)-Pell \((p, i)\)-numbers and their generating matrices and generating functions. Some interesting identities are established.

Hongbo Hua1,2, Libing Zhang1
1Faculty of Mathematics and Physics, Huaiyin Institute of Technology, Huai’an, Jiangsu 223003, PR China
2Department of Mathematics, Nanjing University, Nanjing 210093, PR China
Abstract:

For a graph \(G\), let \({Z}(G)\) be the total number of matchings in \(G\). For a nontrivial graph \(G\) of order \(n\) with vertex set \(V(G) = \{v_1, \ldots, v_n\}\), Cvetković et al. \([2]\) defined the triangle graph of \(G\), denoted by \(R(G)\), to be the graph obtained by introducing a new vertex \(v_{ij}\) and connecting \(u_{ij}\) both to \(v_i\) and to \(v_j\) for each edge \(v_iv_j\) in \(G\). In this short paper, we prove that for a connected graph \(G\), if \({Z}(R(G)) \geq (\frac{1}{2}n-\frac{1}{2}+\frac{5}{2n})^2\), then \(G\) is traceable. Moreover, for a connected graph \(G\), we give sharp upper bounds for \({Z}(R(G))\) in terms of clique number, vertex connectivity, and spectral radius of \(G\), respectively.

Lane Clark 1, Darin Johnson2
1DEPARTMENT OF MATHEMATICS, SOUTHERN ILLINOIS UNIVERSITY CAR- BONDALE, CARBONDALE, IL 62901-4408
2DEPARTMENT OF MATHEMATICAL SCIENCES, DELAWARE STATE UNI- VERSITY, Dover, DE 19901
Abstract:

We prove a two-point concentration for the tree domination number of the random graph \(G_{n,p}\) provided \(p\) is constant or \(p \to 0\) sufficiently slow.

Min-Jen Jou1
1Ling Tung University, Taichung 40852, Taiwan
Abstract:

A 2-independent set in a graph \(G\) is a subset \(J\) of the vertices such that the distance between any two vertices of \(J\) in \(G\) is at least three. The number of 2-independent sets of a graph \(G\) is denoted by \(i_2(G)\). For a forest \(F\), \(i_2(F – e) > i_2(F)\) for each edge \(e\) of \(F\). Hence, we exclude all forests having isolated vertices. A forest is said to be extra-free if it has no isolated vertex. In this paper, we determine the \(k\)-th largest number of 2-independent sets among all extra-free forests of order \(n \geq 2\), where \(k = 1, 2, 3\). Extremal graphs achieving these values are also given.

Roberto B.Corcino1, Mahid M.Mangontarum2
1Department of Mathematics Cebu Normal University Cebu City, Philippines 6000
2Department of Mathematics Mindanao State University-Main Campus Marawi City, Philippines 9700
Abstract:

The notion of multiparameter \(q\)-noncentral Stirling numbers is introduced by means of a triangular recurrence relation. Some properties for these \(q\)-analogues such as vertical and horizontal recurrence relations, horizontal generating functions, explicit formula, orthogonality and inverse relations are established. Moreover, we introduce the multiparameter Bell numbers and Bell polynomials, their connection to factorial moments and their respective \(q\)-analogues.

Sizhong Zhou1
1 School of Mathematics and Physics Jiangsu University of Science and Technology Mengxi Road 2, Zhenjiang, Jiangsu 212003 People’s Republic of China
Abstract:

Let \(a, b\), and \(k\) be nonnegative integers with \(2 \leq a \leq 6\) and \(b \equiv 0 \pmod{a-1}\). Let \(G\) be a graph of order \(n\) with \(n \geq \frac{(a+b-1)(2a+b-4)-a+1}{b} + k\). A graph \(G\) is called an \((a, b, k)\)-critical graph if after deleting any \(k\) vertices of \(G\), the remaining graph has an \([a, b]\)-factor. In this paper, it is proved that \(G\) is an \((a, b, k)\)-critical graph if and only if \[|N_G(X)| >\frac{(a-1)n + |X| + bk-1}{a+b-1} \] for every non-empty independent subset \(X\) of \(V(G)\), and \[\delta(G) > \frac{(a-1)n + b + bk}{a+b-1}.\] Furthermore, it is shown that the result in this paper is best possible in some sense.

Sapna Jain1
1Department of Mathematics University of Delhi Delhi 110 007 India
Abstract:

Two-dimensional codes in \(LRTJ\) spaces are subspaces of the space \(Mat_{m\times s}(\mathbb{Z}_q)\), the linear space of all \(m \times s\)-matrices with entries from a finite ring \(\mathbb{Z}_q\), endowed with the \(LRTJ\)-metric \([3,9]\). Also, the error-correcting capability of a linear code depends upon the number of parity-check symbols. In this paper, we obtain a lower bound on the number of parity checks of two-dimensional codes in \(LRTJ\)-spaces correcting both independent as well as cluster array errors.

Joanna Raczek1
1Department of Applied Physics and Mathematics Gdansk University of Technology Narutowicza 11/12, 80-233 Gdarisk, Poland
Abstract:

Let \(G = (V, E)\) be a graph without an isolated vertex. A set \(D \subseteq V(G)\) is a total dominating set if \(D\) is dominating and the induced subgraph \(G[D]\) does not contain an isolated vertex. The total domination number of \(G\) is the minimum cardinality of a total dominating set of \(G\). A set \(D \subseteq V(G)\) is a total outer-connected dominating set if \(D\) is total dominating and the induced subgraph \(G[V(G) – D]\) is connected. The total outer-connected domination number of \(G\) is the minimum cardinality of a total outer-connected dominating set of \(G\). We characterize all unicyclic graphs with equal total domination and total outer-connected domination numbers.

M.A. Seoud1, A.E.A. Mahran1
1Department of Mathematics, Faculty of science, Ain Shams university, Abbassia, Cairo, Egypt.
Abstract:

We give a characterization of strongly multiplicative graphs. First, we introduce some necessary conditions for a graph to be strongly multiplicative.Second, we discuss the independence of these necessary conditions. Third, we show that they are altogether not sufficient for a graph to be strongly multiplicative. Fourth, we add another necessary condition. Fifth, we prove that this necessary condition is stronger than the mentioned necessary conditions except one. Finally, we conjecture that the condition itself is stronger than all of them.

Kinkar Ch.Das1, A.Dilek Giingér2, S.Burcu Bozkurt2
1Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Republic of Korea.
2 Selcuk University, Science Faculty, Department of Mathematics, 42031 Konya, Turkey.
Abstract:

Let \(G = (V, E)\) be a simple connected graph with \(n\) vertices and \(m\) edges. Further, let \(\lambda_i(L)\), \(i = 1, 2, \ldots, n\), be the non-increasing eigenvalues of the normalized Laplacian matrix of the graph \(G\). In this paper, we obtain the following result: For a connected graph \(G\) of order \(n\), \(lambda_2(L) = \lambda_3(L) = \cdots = \lambda_{n-1}(L)\) if and only if \(G\) is a complete graph \(K_n\) or \(G\) is a complete bipartite graph \(K_{p,q}\). Moreover, we present lower and upper bounds for the normalized Laplacian spectral radius of a graph and characterize graphs for which the lower or upper bounds are attained.

Sizhong Zhou1
1School of Mathematics and Physics Jiangsu University of Science and Technology Mengxi Road 2, Zhenjiang, Jiangsu 212003 People’s Republic of China
Abstract:

Let \(k \geq 3\) be an integer, and let \(G\) be a graph of order \(n\) with \(n \geq \max\{10, 4k-3\}\) and \(\delta(G) \geq k+1\). If \(G\) satisfies \(\max\{d_G(x), d_G(y)\} \geq \frac{n}{2}\) for each pair of nonadjacent vertices \(x, y\) of \(G\), then \(G\) is a fractional \(k\)-covered graph. The result is best possible in some sense, and it improves and extends the result of C. Wang and C. Ji (C. Wang and C. Ji, Some new results on \(k\)-covered graphs, Mathematica Applicata \(11(1) (1998), 61-64)\).

Chia-Ming Lin1, Tao-Ming Wang1
1Department of Mathematics Tunghai University Taichung, Taiwan, 40704
Abstract:

For a positive integer \(k\), let \(\mathbb{Z}_k = (\mathbb{Z}_k, +, 0)\) be the additive group of congruences modulo \(k\) with identity \(0\), and \(\mathbb{Z}_1\) is the usual group of integers \(\mathbb{Z}\). We call a finite simple graph \(G = (V(G), E(G))\) \(\mathbb{Z}_k\)-magic if it admits an edge labeling \(\ell: E(G) \to \mathbb{Z}_k \setminus \{0\}\) such that the induced vertex sum labeling \(\ell^+: V(G) \to \mathbb{Z}_k\), defined by \(\ell^+(v) = \sum_{uv \in E(G)} \ell(uv)\), is constant. The constant is called a \emph{magic sum index}, or an \emph{index} for short, of \(G\) under \(\ell\), following R. Stanley. The \emph{null set} of \(G\), defined by E. Salehi as the set of all \(k\) such that \(G\) is \(\mathbb{Z}_k\)-magic with zero magic sum index, is denoted by \(Null(G)\). For a fixed integer \(k\), we consider the set of all possible magic sum indices \(r\) such that \(G\) is \(\mathbb{Z}_k\)-magic with magic sum index \(r\), and denote it by \(I_k(G)\). We call \(I_k(G)\) the \emph{index set} of \(G\) with respect to \(\mathbb{Z}_k\). In this paper, we investigate properties and relations of index sets \(I_k(G)\) and null sets \(Null(G)\) for \(\mathbb{Z}_k\)-magic graphs. Among others, we determine null sets of generalized wheels and generalized fans and construct infinitely many examples of \(\mathbb{Z}_k\)-magic graphs with magic sum zero. Some open problems are presented.

Liandi Zhang1, Caifeng Zhou2, Yuqin Zhang2
1Center for Combinatorics, LPMC-TJKLC, Nankai University, Tianjin, 300071, P.R.China
2Department of Mathematics, Tianjin University, Tianjin, 300072, P.R.China
Abstract:

Packing and covering are dual problems in graph theory. A graph \(G\) is called \(H\)-equipackable if every maximal \(H\)-packing in \(G\) is also a maximum \(H\)-packing in \(G\). Dually, a graph \(G\) is called \(H\)-equicoverable if every minimal \(H\)-covering in \(G\) is also a minimum \(H\)-covering in \(G\). In 2012, Zhang characterized two kinds of equipackable paths and cycles: \(P_k\)-equipackable paths and cycles, and \(M_k\)-equipackable paths and cycles. In this paper, we characterize \(P_k\)-equicoverable (\(k > 3\)) paths and cycles, and \(M_k\)-equicoverable (\(k > 2\)) paths and cycles.

Haixia Guo1,2, Shufang Zhao3
1College of Science, Tianjin University of Technology and Education, Tianjin, 900222,P.R.China
2 Dept.of Applied Math., Delian University of Technology, Dalian, 116024,P.R.China
3Science and Educational Department, Hebei First People’s Hospital, Shijiazhuang, 050051, P. R. China
Abstract:

For non-negative integers \(n_1, n_2, \ldots, n_t\), let \(GL_{n_1, n_2, \ldots, n_t}(\mathbb{F}_q)\) denote the \(t\)-singular general linear group of degree \(n = n_1 + n_2 + \cdots + n_t\) over the finite field \(\mathbb{F}_q^{n_1+n_2+\ldots+n_t}\) denote the \((n_1+n_2+\ldots+n_t)\)-dimensional \(t\)-singular linear space over the finite \(\mathbb{F}\). Let \(\mathcal{M}\) be any orbit of subspaces under \(GL_{n_1, n_2, \ldots, n_t}(\mathbb{F}_q)\). Denote by \(\mathcal{L}\) the set of all intersections of subspaces in \(M\). Ordered by ordinary or reverse inclusion, two posets are obtained. This paper discusses their geometricity and computes their characteristic polynomials.

Jizhen Yang1, Yunpeng Wang2
1Department of Mathematics, Luoyang normal College, 1 Luoyang 471022, P. R. China
2 Department of Mathematics and Physical, Luoyang Institute of Science and Technology, 2 Luoyang 471022, P. R. China
Abstract:

The purpose of this paper is to establish g-analogue of some identities and then generalize the result to give identities for finite sums for products of generalized q-harmonic numbers and reciprocals of \(q\)-binomial coefficients.

Xueliang Li1, Yaping Mao1
1Center for Combinatorics and LPMC-TJKLC Nankai University, Tianjin 300071, China
Abstract:

For \(S \subseteq V(G)\) and \(|S| \geq 2\), let \(\lambda(S)\) denote the maximum number of edge-disjoint trees connecting \(S\) in \(G\). For an integer \(k\) with \(2 \leq k \leq n\), the generalized \(k\)-edge-connectivity \(\lambda_k(G)\) of \(G\) is defined as \(\lambda_k(G) = \min\{\lambda(S) : S \subseteq V(G) \text{ and } |S| = k\}\). Note that when \(|S| = 2\), \(\lambda_2(G)\) coincides with the standard \emph{edge-connectivity} \(\lambda(G)\) of \(G\). In this paper, we characterize graphs of order \(n\) such that \(\lambda_n(G) = n – 3\). Furthermore, we determine the minimal number of edges of a graph \(G\) of order \(n\) with \(\lambda_3(G) = 1, n – 3, n – 2\) and establish a sharp lower bound for \(2 \leq \lambda_3(G) \leq n – 4\).

Yufei Huang1, Bolian Liu2
1Guangzhou Civil Aviation College, Guangzhou, P.R. China, 510403
2 College of Mathematical Science, South China Normal University, Guangzhou, P.R. China, 510631
Abstract:

The noncrossing partitions with fixed points have been introduced and studied in the literature. In this paper, as their continuations, we derive expressions for \(f_m(x_1, 0^\mu, x_{\mu+2},0^\rho,x_{\mu+\mu+3},0^{m-\mu-\rho-3})\),and \(f_{m}(x_1,x_2, 0^\mu, x_{\mu+3},0^\rho,x_{\mu+\mu+3},0^{\rho+\mu+4},0^{m-\rho-\mu-4}\), are given,respectively. Moreover, we introduce noncrossing partitions with fixed points having specific property \(\mathcal{P}\) and describe their enumeration through a multivariable function \(f_m^\mathcal{P}(x_1, x_2, \ldots, x_m)\). Additionally, we obtain counting formulas for \(f_m^\mathcal{P}(x_1, 0^{m-1})\) and \(f_m^\mathcal{P}(x_1, x_2, 0^{m-2})\) for various properties \(\mathcal{P}\).

Haoli Wang1, Xirong Xu2, Yuansheng Yang2, Guoging Wang3
1College of Computer and Information Engineering Tianjin Normal University, Tianjin, 300387, P. R. China
2Department of Computer Science Dalian University of Technology, Dalian, 116024, P. R. China
3Department of Mathematics Tianjin Polytechnic University, Tianjin, 300387, P. R. China
Abstract:

Let \(G = (V(G), E(G))\) be a simple, connected, and undirected graph with vertex set \(V(G)\) and edge set \(E(G)\). A set \(S \subseteq V(G)\) is a \emph{dominating set} if for each \(v \in V(G)\), either \(v \in S\) or \(v\) is adjacent to some \(w \in S\). That is, \(S\) is a dominating set if and only if \(N[S] = V(G)\). The \emph{domination number} \(\gamma(G)\) is the minimum cardinality of minimal dominating sets. In this paper, we provide an improved upper bound on the domination number of generalized Petersen graphs \(P(c,k)\) for \(c \geq 3\) and \(k \geq 3\). We also prove that \(\gamma(P(4k,k)) = 2k + 1\) for even \(k\), \(\gamma(P(5k, k)) = 3k\) for all \(k \geq 1\), and \(\gamma(P(6k,k)) = \left\lceil \frac{10k}{3} \right\rceil\) for \(k \geq 1\) and \(k \neq 2\).

Kyle Kolasinski1, Jianwei Lin1, Chira Lumduanhom1, Bryan Phinezy1, Futaba Okamoto2
1Department of Mathematics Western Michigan University Kalamazoo, MI 49008
2 Mathematics Department University of Wisconsin – La Crosse La Crosse, WI 54601
Abstract:

A proper coloring of a graph \(G\) assigns colors to vertices such that adjacent vertices receive distinct colors. The minimum number of colors is the chromatic number \(\chi(G)\). For a graph \(G\) and a proper coloring \(c: V(G) \to \{1, 2, \ldots, k\}\), the color code of a vertex \(v\) is \(code(v) = (c(v), S_v)\), where \(S_v = \{c(u): u \in N(v)\}\). Coloring \(c\) is \emph{singular} if distinct vertices have distinct color codes, and the \emph{singular chromatic number} \(\chi_s(G)\) is the minimum positive integer \(k\) for which \(G\) has a singular \(k\)-coloring. Thus, \(\chi(G) \leq \chi_{si}(G) \leq n\) for every graph \(G\) of order \(n\). We establish a characterization for all triples \((a, b, n)\) of positive integers for which there exists a graph \(G\) of order \(n\) with \(\chi(G) = a\) and \(\chi_{si}(G) = b\). Furthermore, for every vertex \(v\) and edge \(e\) in \(G\), we show:
\( \chi_{si}(G) – 1 \leq \chi_{si}(G – v) \leq \chi_{si}(G) + \deg(v) \) and
\( \chi_{si}(G) – 1 \leq \chi_{si}(G – e) \leq \chi_{si}(G) + 2, \)
and prove that these bounds are sharp. Additionally, we determine the singular chromatic numbers of cycles and paths.

Yuan Sun1
1Department of Mathematics and Physics Shanghai University of Electric Power Shanghai, 201300, China
Abstract:

In this paper, we construct new classes of difference systems of sets with three blocks.

Fan Wang1,2, Heping Zhang1
1School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
2Department of Mathematics, Nanchang University, Nanchang, Jiangxi 330000, P, R. China
Abstract:

Ruskey and Savage posed the question: For \(n \geq 2\), does every matching in \(Q_n\) extend to a Hamiltonian cycle in \(Q_n\)? Fink showed that the answer is yes for every perfect matching, thereby proving Kreweras’ conjecture. In this paper, we prove that for \(n \geq 3\), every matching in \(Q_n\) not covering exactly two vertices at distance \(3\) extends to a Hamiltonian cycle in \(Q_n\). An edge in \(Q_n\) is an \(i\)-edge if its endpoints differ in the \(i\)th position. We also show that for \(n \geq 2\), every matching in \(Q_n\) consisting of edges in at most four types extends to a Hamiltonian cycle in \(Q_n\).

E-mail Alert

Add your e-mail address to receive upcoming issues of Ars Combinatoria.

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;