Flavia Bonomo1, Mariano Cecowski Palacio2
1Departamento de Matemdtica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
2Departamento de Computacién, Facultad de Ciencias Ezactas y Naturales, Universidad de Buenos Aires, Argentina
Abstract:

A new variation of the coloring problem, \(\mu\)-coloring, is defined in this paper. A coloring of a graph \(G = (V, E)\) is a function \(f: V \rightarrow \mathbb{N}\) such that \(f(v) \neq f(w)\) if \(v\) is adjacent to \(w\). Given a graph \(G = (V, E)\) and a function \(\gamma: V \rightarrow \mathbb{N}\), \(G\) is \(\mu\)-colorable if it admits a coloring \(f\) with \(f(v) \leq \mu(v)\) for each \(v \in V\). It is proved that \(\mu\)-coloring lies between coloring and list-coloring, in the sense of generalization of problems and computational complexity. Furthermore, the notion of perfection is extended to \(\mu\)-coloring, giving rise to a new characterization of cographs. Finally, a polynomial time algorithm to solve \(p\)-coloring for cographs is shown.

Muhammad Akram1, Noura Omir Al-shehri2
1Punjab University College of Information Technology, University of the Punjab, Old Campus, Lahore-54000, PAKISTAN.
2Department of Mathematic, Faculty of Sciences( Girl’s ), King Abdulaziz University, Jeddah, Saudi Arabia.
Abstract:

We introduce the notion of fuzzy \(K\)-ideals of \(K\)-algebras and investigate some of their properties. We characterize ascending and descending chains of \(K\)-ideals by the corresponding fuzzy \(K\)-ideals. We discuss some properties of characteristic fuzzy \(K\)-ideals of \(K\)-algebras. We construct a quotient \(K\)-algebra via fuzzy \(K\)-ideal and present the fuzzy isomorphism theorems.

G.C. Lau1,2, Y.H. Peng3,2, H.H. Chu1
1Faculty of Computer & Mathematical Sciences Universiti Teknologi MARA (Segamat Campus) 85200 Johor, Malaysia
2Institute for Mathematical Research Universiti Putra Malaysia 48400 UPM Serdang, Malaysia
3Department of Mathematics, and Universiti Putra Malaysia 48400 UPM Serdang, Malaysia
Abstract:

Let \(P(G,\lambda)\) be the chromatic polynomial of a graph \(G\). A graph \(G\) is chromatically unique if for any graph \(H\), \(P(H,\lambda) = P(G, \lambda)\) implies \(H\) is isomorphic to \(G\). It is known that a complete tripartite graph \(K(a,b,c)\) with \(c \geq b \geq a \geq 2\) is chromatically unique if \(c – a \leq 3\). In this paper, we proved that a complete \(4\)-partite graph \(K(a,b,c,d)\) with \(d \geq c \geq b \geq a \geq 2\) is also chromatically unique if \(d – a \leq 3\).

Bart De Bruyn1
1Ghent University, Department of Pure Mathematics and Computer Algebra, Krijgslaan 281 (S22), B-9000 Gent, Belgium,
Abstract:

In \([6]\), Cooperstein and Shult showed that the dual polar space \({DQ}^-(2n+1,\mathbb{K})\), \(\mathbb{K} = \mathbb{F}_q\), admits a full projective embedding into the projective space \({PG}(2^n – 1,\mathbb{K}’)\), \(\mathbb{K}’ = \mathbb{F}_{q^2}\). They also showed that this embedding is absolutely universal. The proof in \([6]\) makes use of counting arguments and group representation theory. Because of the use of counting arguments, the proof cannot be extended automatically to the infinite case. In this note, we shall give a different proof of their results, thus showing that their conclusions remain valid for infinite fields as well. We shall also show that the above-mentioned embedding of \({DQ}^-(2n + 1,\mathbb{K})\) into \({PG}(2^n -1,\mathbb{K}’)\) is polarized.

Ahmet Tekcan1
1Unupac UnrversiTY, FACULTY OF SCIENCE, DEPARTMENT OF MATHEMATICS, GORUKLE, 16059, Bursa-TURKEY
Abstract:

Let \(p\) be a prime number and let \(\mathbb{F}_p\) be a finite field. In the first section, we give some preliminaries from elliptic curves over finite fields. In the second section, we consider the rational points on the elliptic curves \(E_{p,\lambda} : y^2 = x(x-1)(x-\lambda)\) over \(\mathbb{F}_p\) for primes \(p \equiv 3 \pmod{4}\), where \(\lambda \neq 0, 1\). We prove that the order of \(E_{p,\lambda}\) over \(\mathbb{F}_p\) is \(p+1\) if \(\lambda = 2,\frac{p+1}{2}\) or \(p-1\). Later, we generalize this result to \(\mathbb{F}_{p^n}\) for any integer \(n \geq 2\). Also, we obtain some results concerning the sum of \(x\)- and \(y\)-coordinates of all rational points \((x,y)\) on \(E_{p,\lambda}\) over \(\mathbb{F}_p\). In the third section, we consider the rank of \(E_\lambda : y^2 = x(x-1)(x-\lambda)\) over \(\mathbb{Q}\).

Nuh Aydin1
1 Department of Mathematics, Kenyon College Gambier, OH 43022
Abstract:

For over a decade, there has been considerable research on codes over \(\mathbb{Z}_4\) and other rings. In spite of this, no tables or databases exist for codes over \(\mathbb{Z}_4\), as is the case with codes over finite fields. The purpose of this work is to contribute to the creation of such a database. We consider cyclic, negacyclic and quasi-twisted \((QT)\) codes over \(\mathbb{Z}_4\). Some of these codes have binary images with better parameters than the best-known binary linear codes. We call such codes “good codes”. Among these are two codes which improve the bounds on the best-known binary non-linear codes. Tables of best cyclic and \(QT\) codes over \(\mathbb{Z}_4\) are presented.

S.M. Hegde1, Sudhakar Shetty2, P. Shankaran2
1Department of Mathematical and Computational Sciences, National Institute of Technology Karnataka, Surathkal, INDIA.
2Department of Mathematics, Nitte Education Trust, Nitte, 574110, Karnataka, INDIA.
Abstract:

Acharya and Hegde have introduced the notion of strongly \(k\)-indexable graphs: A \((p,q)\)-graph \(G\) is said to be strongly \(k\)-indexable if its vertices can be assigned distinct integers \(0,1,2,\ldots,p-1\) so that the values of the edges, obtained as the sums of the numbers assigned to their end vertices can be arranged as an arithmetic progression \(k,k+1,k+2,\ldots,k+(q-1)\). Such an assignment is called a strongly \(k\)-indexable labeling of \(G\). Figueroa-Centeno et al. have introduced the concept of super edge-magic deficiency of graphs: Super edge-magic deficiency of a graph \(G\) is the minimum number of isolated vertices added to \(G\) so that the resulting graph is super edge-magic. They conjectured that the super edge-magic deficiency of the complete bipartite graph \(K_{m,n}\) is \((m-1)(n-1)\) and proved it for the case \(m=2\). In this paper, we prove that the conjecture is true for \(m=3,4,5\), using the concept of strongly \(k\)-indexable labelings \(^1\).

Paul Manuel1, Bharati Rajan2, Indra Rajasingh2, Chris Monica M2
1Department of Information Science, Kuwait University, Kuwait 13060
2Department of Mathematics, Loyola College, Chennai 600 034, India
Abstract:

Let \(M = \{v_1, v_2, \ldots, v_t\}\) be an ordered set of vertices in a graph \(G\). Then \((d(u, v_1), d(u, v_2), \ldots, d(u, v_\ell))\) is called the \(M\)-location of a vertex \(u\) of \(G\). The set \(M\) is called a locating set if the vertices of \(G\) have distinct \(M\)-locations. A minimum locating set is a set \(M\) with minimum cardinality. The cardinality of a minimum locating set of \(G\) is called the Location Number \(L(G)\). This concept has wide applications in motion planning and in the field of robotics. In this paper, we consider networks with a binary tree as an underlying structure and determine the minimum locating set of such architectures. We show that the location number of an \(n\)-level \(X\)-tree lies between \(2^{n-3}\) and \(2^{n – 3} + 2\). We further prove that the location number of an \(N \times N\) mesh of trees is greater than or equal to \(N/2\) and less than or equal to \(N\).

Iwona Wioch1, Andrzej Wioch1
1Rzeszow University of Technology Faculty of Mathematics and Applied Physics ul, W. Pola 2,35-959 Rzeszdw, Poland
Abstract:

In this paper, we give generalizations of Padovan numbers and Perrin numbers. We apply these generalizations for counting of special subsets of the set of \(n\) integers. Next, we give their graph representations with respect to the number of maximal \(k\)-independent sets in graphs.

Pak Tung Ho1
1Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, IN 47907-2067.
Abstract:

In this paper, we show that the crossing number of the complete multipartite graph \(K_{1,1,3,n}\) is

\[\operatorname{cr}(K_{1,1,3,n}) = 4\lfloor\frac{n}{2}\rfloor\lfloor\frac{n-1}{2}\rfloor + \lfloor\frac{3n}{2}\rfloor\]

Our proof depends on Kleitman’s results for the complete bipartite graphs [D. J. Kleitman, The crossing number of \(K_{5,n}\), J. Combin.Theory, \(9 (1970), 315-323\)]..

Hong Lin1
1School of Sciences, Jimei University, Xiamen, Fujian, 361021, P.R.China
Abstract:

A near-perfect matching is a matching saturating all but one vertex in a graph. In this note, it is proved that if a graph has a near-perfect matching then it has at least two, moreover, a concise structure construction for all graphs with exactly two near-perfect matchings is given. We also prove that every connected claw-free graph \(G\) of odd order \(n\) (\(n \geq 3\)) has at least \(\frac{n+1}{2}\) near-perfect matchings which miss different vertices of \(G\).

Cristina Di Bari1, Pasquale Vetro2
1UNIVERSITA DEGLI STuDI DI PALERMO, DIPARTIMENTO DI MATEMATICA E INFORMATICA, VIA ARCHIRAFI, 34 – 90123 PALERMO (ITALY)
2UNIVERSITA DEGLI STUDI DI PALERMO, DIPARTIMENTO DI MATEMATICA E INFORMATICA, VIA ARCHIRAFI, 34 – 90123 PALERMO (ITALY)
Abstract:

In this paper, we introduce some contractive conditions of Meir-Keeler type for a pair of mappings, called MK-pair and L-pair, in the framework of cone metric spaces. We prove theorems which assure the existence and uniqueness of common fixed points for MK-pairs and L-pairs. As an application, we obtain a result on the common fixed point of a p-MK-pair, a mapping, and a multifunction in complete cone metric spaces. These results extend and generalize well-known comparable results in the literature.

AK. Agarwal1, G. Narang1
1Centre for Advanced Studies in Mathematics, Panjab University, Chandigarh-160 014, India
Abstract:

Four new combinatorial identities involving certain generalized \(F\)-partition functions and \(n\)-colour partition functions are proved bijectively. This leads to new combinatorial interpretations of four mock theta functions of S.Ramanujan.

Robert Brier1, Darryn Bryant1
1Department of Mathematics University of Queensland Qld 4072, Australia
Abstract:

le of an edge-coloured graph \(G^*\) such that there is no finite integer \(n\) for which it is possible to decompose \(rK_n^*\) into edge-disjoint colour-identical copies of \(G^*\). We investigate the problem of determining precisely when an edge-coloured graph \(G^*\) with \(r\) colours admits a \(G^*\)-decomposition of \(rK_n^*\), for some finite \(n\). We also investigate conditions under which any partial edge-coloured \(G^*\)-decomposition of \(rK_n^*\) has a finite embedding.

Daphne Der-Fen Liu1
1Department of Mathematics California State University, Los Angeles Los Angeles, CA 90032, USA
Abstract:

Let \(G\) be a connected graph, and let \(d(u,v)\) denote the distance between vertices \(u\) and \(v\) in \(G\). For any cyclic ordering \(\pi\) of \(V(G)\), let \(\pi = (v_1, v_2, \ldots, v_n, v_{n+1} = v_1)\), and let \(d(\pi) = \sum\limits_{i=1}^n d(v_i, v_{i+1})\). The set of possible values of \(d(\pi)\) of all cyclic orderings \(\pi\) of \(V(G)\) is called the Hamiltonian spectrum of \(G\). We determine the Hamiltonian spectrum for any tree.

Linggi Zhao1, Siqintuya 2, Jirimutu 2
1College of Computer Science and Technology Inner Mongolian University for Nationalities Tongliao 028043, P.R.China
2College of Mathematics Inner Mongolian University for Nationalities Tongliao 028043, P.R.China
Abstract:

A digraph \(D(V, E)\) is said to be graceful if there exists an injection \(f : V(D) \rightarrow \{0, 1, \ldots, |V|\}\) such that the induced function \(f’ : E(D) \rightarrow \{1, 2, \ldots, |V|\}\) which is defined by \(f'(u,v) = [f(v) – f(u)] \pmod{|E| + 1}\) for every directed edge \((u,v)\) is a bijection. Here, \(f\) is called a graceful labeling (graceful numbering) of digraph \(D(V, E)\), while \(f’\) is called the induced edge’s graceful labeling of digraph \(D(V,E)\). In this paper, we discuss the gracefulness of the digraph \(n-\vec{C}_m\) and prove that the digraph \(n-\vec{C}_{17}\) is graceful for even \(n\).

Shaopu Zhang1
1Department of Mathematics and Physics, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
Abstract:

Candelabra quadruple systems, which are usually denoted by \(\text{CQS}(g^n : s)\), can be used in recursive constructions to build Steiner quadruple systems. In this paper, we introduce some necessary conditions for the existence of a \(\text{CQS}(g^n : s)\) and settle the existence when \(n = 4,5\) and \(g\) is even. Finally, we get that for any \(n \in \{n \geq 3: n \equiv 2,6 \pmod{12}\) and \(n \neq 8\}\), there exists a \(\text{CQS}(g^n : s)\) for all \(g \equiv 0 \pmod{6}\), \(s \equiv 0 \pmod{2}\) and \(0 \leq s \leq g\).

Azizolla Azad1, Mehdi Eliasi2
1Department of Mathematics, Faculty of sciences, Arak University, Arak 38156-8-8349, IRAN
2 Department of Mathematics, Faculty of Khansar, University of Isfahan, Isfahan 81746-78441, IRAN
Abstract:

Let \(G\) be a non-abelian group and let \(Z(G)\) be the center of \(G\). Associate with \(G\) a graph \(\Gamma_G\) as follows: Take \(G\setminus Z(G)\) as vertices of \(\Gamma_G\) and join two distinct vertices \(x\) and \(y\) whenever \(xy \neq yx\). Graph \(\Gamma_G\) is called the non-commuting graph of \(G\) and many of graph theoretical properties of \(\Gamma_G\) have been studied. In this paper, we study some metric graph properties of \(\Gamma_G\).

H. Roslan1, Y.H. Peng2
1School of Mathematical Sciences Universiti Sains Malaysia, 11800 Penang, Malaysia
2Department of Mathematics, and Institute for Mathematical Research University Putra Malaysia 43400UPM Serdang, Malaysia
Abstract:

For integers \(p\), \(q\), \(s\) with \(p \geq q \geq 2\) and \(s \geq 0\), let \(\mathcal{K}_{2}^{-s}(p,q)\) denote the set of \(2\)-connected bipartite graphs which can be obtained from the complete bipartite graph \(K_{p,q}\) by deleting a set of \(s\) edges. F.M.Dong et al. (Discrete Math. vol.\(224 (2000) 107-124\)) proved that for any graph \(G \in \mathcal{K}_{2}^{-s}(p,q)\) with \(p \geq q \geq 3\) and \(0 \leq s \leq \min\{4, q-1\}\), then \(G\) is chromatically unique. In \([13]\), we extended this result to \(s = 5\) and \(s = 6\). In this paper, we consider the case when \(s = 7\).

Jinhua Wang1
1 School of Sciences, Nantong University Nantong 226007, P. R. China
Abstract:

Let \(\lambda K_{h^u}\) denote the \(\lambda\)-fold complete multipartite graph with \(u\) parts of size \(h\). A cube factorization of \(\lambda K_{h^u}\) is a uniform \(3\)-factorization of \(\lambda K_{h^u}\) in which the components of each factor are cubes. We show that there exists a cube factorization of \(\lambda K_{h^u}\) if and only if \(uh \equiv 0 \pmod{8}\), \(\lambda (u-1)h \equiv 0 \pmod{3}\), and \(u \geq 2\). It gives a new family of uniform \(3\)-factorizations of \(\lambda K_{h^u}\). We also establish the necessary and sufficient conditions for the existence of cube frames of \(\lambda K_{h^u}\).

G. Sethuraman1, K. Sankar1
1Department of Mathematics Anna University Chennai – 600 025 India
Abstract:

We recall from [13] a shell graph of size \(n\), denoted \(C(m,n-3)\), is the graph obtained from the cycle \(C_n(v_0,v_1,v_2\ldots,v_{n-1})\) by adding \(m-3\) consecutive chords incident at a common vertex, say \(v_0\). The vertex \(v_0\) of \(C(n,n-3)\) is called the apex of the shell \(C(n,n-3)\). The vertex \(v_0\) of \(C(n,n-3)\) is said to be at level \(l\).

A graph \(C(2n,n-2)\) is called an alternate shell, if \(C(2n,n-2)\) is obtained from the cycle \(C{2n}(v_0,v_1,v_2\ldots,v_{2n-1})\) by adding \(n-2\) chords between the vertex \(v_0\) and the vertices \(v_{2i-1}\) for \(1-i\delta n\). If the vertex \(v_i\) of \(C(2n,n-2)\) at level \(l\) and is adjacent with \(v_0\), then \(v_l\) is said to be at level \(l\) with a chord, otherwise the vertex \(v_i\) is said to be at level \(l\) without a chord.

A graph, denoted \(G{2n_i,n_i,2,k,l}\), is called one vertex union of alternate shells with a path at any common level \(l\) (with or without chords), if it is obtained from \(k\) alternate shells \(C(2n_i,n_i-2)’s\), \(1- i\delta k\), by merging them together at their apex and joining \(k\) vertices each chosen from a distinct alternate shell in a particular level \(l\) (with or without chords) by a path \(P_{2k-1}\), such that the chosen vertex of the \(i\)th alternate shell \(C(2n_i,n_i-2)\) is at the \((2i-1)\)th vertex of the \(P_{2k-l}\) for \(1- i\delta k\). We denote the graph \(G{2n_i,n_i,2,k,l}\) as \(G{2n_i,n_i,2,k,l_c}\) if the path \(P_{2k-1}\) joins the vertices only at the common level \(l\) with chords.

In this paper, we show that \(G{2n_i,n_i,2,k,l_c}\) is graceful and admits an \(A\)-labeling, for \(k-\tau1, n_i\), \( 3,1\tau1,n_i\), and \(G{2n_i,n_i,2,k,1}\) is cordial, for \(n_i-n-3 ,k-1,1\tau i\).

Wongsakorn Charoenpanitseri1,2, Narong Punnim3, Chariya Uiyyasathian2
1Department of Mathematics, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
2Center of Excellent in Mathematics, CHE, Sri Ayutthaya Rd. Bangkok, 10400, Thailand.
3Department of Mathematics, Srinakharinwirot University, Sukhumvit 23, Bangkok 10110, Thailand
Abstract:

A \((k,t)\)-list assignment \(L\) of a graph \(G\) is a mapping which assigns a set of size \(k\) to each vertex \(v\) of \(G\) and \(|\bigcup_{v\in V(G)}L(v)| = t\). A graph \(G\) is \((k, t)\)-choosable if \(G\) has a proper coloring \(f\) such that \(f(v) \in L(v)\) for each \((k, t)\)-list assignment \(L\).

We determine \(t\) in terms of \(k\) and \(n\) that guarantee \((k, t)\)-choosability of any \(n\)-vertex graph and a better bound if such graph does not contain a \((k+1)\)-clique.

Yufa Shen1,2, Jun Guo3, Xin Xiao1, Qing Tang3
1Department of Mathematics, Hebei Normal University of Science and Technology, Qinhuangdao 066004, P.R. China
2Center for Mathematics of Hebei Province, Hebei Normal University, Shijiazhuang 050016, P.R. China
3Applied Mathematics Institute, Hebei University of Technology, Tianjin 300401, P.R. China
Abstract:

For paths \(P_n\), Chartrand, Nebesky and Zhang gave the exact value of \(ac'(P_n)\) for \(n \leq 8\), and showed that \(ac'(P_n) \leq \binom{n-2}{2}+2\) for every positive integer \(n\), where \(ac'(P_n)\) denotes the nearly antipodal chromatic number of \(P_n\). In this paper, we determine the exact values of \(ac'(P_n)\) for all even integers \(n \geq 8\).

Chin-Mei Fu1, Yu-Fong Hsu1, Wen-Chung Huang2
1Department of Mathematics Tamkang University, Tamsui, Taipei Shien, Taiwan, Republic of China
2Department of Mathematics Soochow University, Taipei, Taiwan, Republic of China.
Abstract:

A \(2\)-factor of a graph \(G\) is a \(2\)-regular spanning subgraph of \(G\) and a \(2\)-factorization of a graph \(G\) is a \(2\)-factor decomposition of \(G\). A complete solution to the problem of determining the spectrum of \(4\)-cycles in \(2\)-factorizations of the complete bipartite graph is presented.

Louis M.Friedler1
1Arcadia University Glenside, PA 19038
Abstract:

We study the independence number of the Cartesian product of binary trees and more general bipartite graphs. We give necessary and sufficient conditions on bipartite graphs under which certain upper and lower bounds on the independence number of the product are equal. A basic tool will be an algorithm for finding the independence number of a binary tree.

Chen Shangdi1, Zhao Dawei1
1College of Science, Civil Aviation University of China, Tianjin, 300300, PR.China,
Abstract:

Multireceiver authentication codes allow one sender to construct an authenticated message for a group of receivers such that each receiver can verify the authenticity of the received message. In this paper, we construct two multireceiver authentication codes from symplectic geometry over finite fields. The parameters and the probabilities of deceptions of the codes are also computed.

Iwao Sato1
1Oyama National College of Technology Oyama, Tochigi 323-0806, JAPAN
Abstract:

We give determinant expressions of the zeta function and an \(L\)-function of a semiregular weighted bipartite graph. As an application, we present a decomposition formula for the weighted complexity of a semiregular weighted bipartite graph.

Lili Hu1, Chunhui Lai1
1Department of Mathematics, Zhangzhou Teachers College, Zhangzhou, Fujian 363000, P. R. of CHINA.
Abstract:

In this paper, we characterize the potentially \((K_5 – C_4)\)-graphic sequences, where \(K_s – C_4\) is the graph obtained from \(K_5\) by removing four edges of a \(4\)-cycle \(C_4\). This characterization implies a theorem due to Lai \([6]\).

Adel T. Diab1
1 Faculty of Science, Department of Mathematics, Ain Shams University Abbassia, Cairo, Egypt.
Abstract:

A graph is said to be cordial if it has a \(0-1\) labeling that satisfies certain properties. The purpose of this paper is to generalize some known theorems and results of cordial graphs. Specifically, we show that certain combinations of paths, cycles, stars, and null graphs are cordial. Finally, we prove that the torus grids are cordial if and only if its size is not congruent to \(2\) \((mod 4)\).

A.A.G. Ngurah1, E.T. Baskoro1,2, I. Tomescu3,2
1Combinatorial Mathematics Research Group Faculty of Mathematics and Natural Science, Institut Teknologi Bandung Jalan Ganesa 10 Bandung, Indonesia.
2School of Mathematical Sciences, GC University 68-B, New Muslim Town, Lahore, Pakistan.
3Faculty of Mathematics and Computer Science, University of Bucharest Str. Academiei, 14, 010014 Bucharest, Romania.
Abstract:

A graph \(G\) is edge-magic if there exists a bijection \(f\) from \(V(G) \cup E(G)\) to \(\{1, 2, 3, \ldots, |V(G)| + |E(G)|\}\) such that for any edge \(uv\) of \(G\), \(f(u) + f(uv) + f(v)\) is constant. Moreover, \(G\) is super edge-magic if \(V(G)\) receives \(\{1, 2, \ldots, |V(G)|\}\) smallest labels. In this paper, we propose methods for constructing new (super) edge-magic graphs from some old ones by adding some new pendant edges.

K. Uslu1, N. Taskara1, H.H. Gulec1
1Selcuk University, Science Faculty, Department of Mathematics, 42250, Campus, Konya, Turkey
Abstract:

In this study, we consider a generalization of the well-known Fibonacci and Lucas numbers related to combinatorial sums by using finite differences. To write generalized Fibonacci and Lucas sequences in a new direct way, we investigate some new properties of these numbers.

Ali Ahmad1, Imran Javaid2, M.F. Nadeem3
1Department of Mathematics, Govt. College University, Lahore, Pakistan.
2Center for Advanced Studies in Pure and Applied Mathematics, Bahauddin Zakariya University Multan, Pakistan
3Abdus Salam School of Mathematical Sciences, GC University, 68-B, New Muslim Toun, Lahore, Pakistan
Abstract:

A graph \(G\) is called edge-magic if there exists a bijective function \(\phi: V(G) \cup E(G) \rightarrow \{1, 2, \ldots, |V(G)| + |E(G)|\}\) such that \(\phi(x) + \phi(xy) + f\phi(y) = c(\phi)\) is a constant for every edge \(xy \in E(G)\), called the valence of \(\phi\). A graph \(G\) is said to be super edge-magic if \(\phi(V(G)) = \{1, 2, \ldots, |V(G)|\}\). The super edge-magic deficiency, denoted by \(\mu_s(G)\), is the minimum nonnegative integer \(n\) such that \(G \cup nK_1\) has a super edge-magic labeling, if such integer does not exist we define \(\mu_s(G)\) to be \(+\infty\). In this paper, we study the super edge-magic deficiency of some families of unicyclic graphs.

Luca Ferrari1, Elisa Pergola2, Renzo Pinzani2, Simone Rinaldi3
1Dipartimento di Scienze Matematiche ed Informatiche, Pian dei Mantellini, 44, 53100, Siena, Italy
2Dipartimento di Sistemi e Informatica, viale Morgagni 65, 50134 Firenze, Italy
3Dipartimento di Scienze Matematiche ed Informatiche, Pian dei Mantellini, 44, 53100, Siena, Italy
Abstract:

In \([FP]\) the \(ECO\) methed and Aigner’s theory of Catalan-like numbers are compared, showing that it is often possible to translate a combinatorial situation from one theory into the other by means of a standard change of basis in a suitable vector space. In the present work we emphasize the soundness of such an approach by finding some applications suggested by the above mentioned translation. More precisely, we describe a presumably new bijection between two classes of lattice paths and we give a combinatorial interpretation to an integer sequence not appearing in \([SI]\).

Morteza Hivadi1, Morteza Esmaeili2
1Dept. of Mathematical Sciences Isfahan University of Technology 84156-83111, Isfahan, Iran
2Dept. of Electrical and Computer Engineering University of Victoria, Victoria, B.C., Canada V8W 3P6
Abstract:

High stopping-distance low-density parity-check \((LDPC)\) product codes with finite geometry \(LDPC\) and Hamming codes as the constituent codes are constructed. These codes have high stopping distance compared to some well-known LDPC codes. As examples, linear \((511, 180, 30)\), \((945, 407, 27)\), \((2263, 1170, 30)\), and \((4095, 2101, 54)\) LDPC codes are designed with stopping distances \(30\), \(27\), \(30\), and \(54\), respectively. Due to their good stopping redundancy, they can be considered as low-complexity codes with very good performance when iterative decoding algorithms are used.

Maref Y.M.Alzoubi1
1Department of Mathematics Yarmouk University Irbid-Jordan
Abstract:

The basis number of a graph \(G\) is defined to be the least positive integer \(d\) such that \(G\) has a \(d\)-fold basis for the cycle space of \(G\).

In this paper, we prove that the basis number of the Cartesian product of different ladders is exactly \(4\). However, if we apply Theorem \(4.1\) of Ali and Marougi \([4]\), which is stated in the introduction as Theorem \(1.1\), we find that the basis number of the circular and Möbius ladders with circular ladders and Möbius ladders is less than or equal to \(5\), and the basis number of ladders with circular ladders and circular ladders with circular ladders is at most \(4\).

M. Bergerson1, A. Miller1, A. Pliml1, V. Reiner1, P. Shearer1, D. Stanton1, N. Switala1
1ScHOOL OF MATHEMATICS, UNIVERSITY OF MINNESOTA, MINNEAPOLIS, MN 55455, USA
Abstract:

It is shown that there are \(\binom{2n-r-1}{n-r}\) noncrossing partitions of an \(n\)-set together with a distinguished block of size \(r\), and \(\binom{n}{k-1}\binom{n-r-1}{k-2}\) of these have \(k\) blocks, generalizing a result of Béna on partitions with one crossing. Furthermore, specializing natural \(q\)-analogues of these formulae with \(q\) equal to certain \(d^{th}\) roots of unity gives the number of such objects having \(d\)-fold rotational symmetry.

A.P. Santhakumaran1, P. Titus2
1Department of Mathematics St. Xavier’s College (Autonomous) Palayamkottai – 627 002, Tamil Nadu, India.
2Department of Mathematics St.Xavier’s Catholic College of Engineering Chunkankadai – 629 807, Tamil Nadu, India.
Abstract:

In this paper, we introduce the concept of geodesic graph at a vertex of a connected graph and investigate its properties. We determine the bounds for the number of edges of the geodesic graph. We prove that an edge of a graph is a cut edge if and only if it is a cut edge of each of its geodesic graphs. Also, we characterize a bipartite graph as well as a geodetic graph in terms of its geodesic graph.

Guanghui Wang1,2, Guizhen Liu1
1School of Mathematics and System Science Shandong University Jinan Shandong 250100, China
2Laboratoire de Recherche en Informatique UMR 8628, C.N.B.S.-Université de Paris-sud 91405-Orsay cedex, France
Abstract:

In this paper, we study the circular choosability recently introduced by Mohar \([5]\) and Zhu \([11]\). In this paper, we show that the circular choosability of planar graphs with girth at least \(\frac{10n+8}{3}\) is at most \(2 + \frac{2}{n}\), which improves the earlier results.

Lutz Volkmann 1
1Lehrstuhl II fiir Mathematik, RWTH Aachen University, 52056 Aachen, Germany
Abstract:

An orientation of a simple graph \(G\) is called an oriented graph. If \(D\) is an oriented graph, \(\delta(D)\) its minimum degree and \(\lambda(D)\) its edge-connectivity, then \(\lambda(D) \leq \delta(D)\). The oriented graph is called maximally edge-connected if \(\lambda(D) = \delta(D)\) and super-edge-connected, if every minimum edge-cut is trivial. If \(D\) is an oriented graph with the property that the underlying graph \(G(D)\) contains no complete subgraph of order \(p+1\), then we say that the clique number \(\omega(D)\) of \(D\) is less or equal \(p\).

In this paper, we present degree sequence conditions for maximally edge-connected and super-edge-connected oriented graphs \(D\) with clique number \(\omega(D) \leq p\) for an integer \(p \geq 2\).

Zhiwen Wang1,2, Jaeun Lee2, Jingwen Li3, Fei Wen3
1School of Mathematics and Computer Science, Ningxia University, Yinchuan, 750021, P.R.China.
2Department of Mathematics of Yeungnam University, Daedong, Kyongsan, Kyongbuk, 712-749, Korea
3Department of Mathematics, Lanzhou Jiaotong University, Lanzhou, 730070, P.R.China
Abstract:

A proper total coloring of a graph \(G\) is called Smarandachely adjacent vertex total coloring of graph if for any two adjacent and distinct vertices \(u\) and \(v\) in \(G\), the set of colors assigned to the vertices and the edges incident to \(u\) doesn’t contain the set of colors assigned to the vertices and the edges incident to \(v\), vice versa. The minimal number of colors required for a Smarandachely adjacent vertex total coloring of graph is called the Smarandachely adjacent vertex total chromatic number of graph. In this paper, we define a kind of \(3\)-regular Multilayer Cycle \(Re(n,m)\) and obtain the Smarandachely adjacent vertex total chromatic number of it.

S. Bonvicini1, G. Mazzuoccolo2
1Dipartimento di Scienze Sociali Cognitive e Quantitative, Universita di Modena e Reggio Emilia, via Allegri 9, 42100 Reggio Emilia (Italy)
2Dipartimento di Matematica, Universita di Modena e Reggio Emilia, via Campi 213/B, 41100 Modena (Italy)
Abstract:

A perfectly one-factorable (PIF) regular graph \(G\) is a graph admitting a partition of the edge-set into one-factors such that the union of any two of them is a Hamiltonian cycle. We consider the case in which \(G\) is a cubic graph. The existence of a PIF cubic graph is guaranteed for each admissible value of the number of vertices. We give conditions for determining PIF graphs within a subfamily of generalized Petersen graphs.

K. Uslu1, N. Taskara1, H. Kose1
1Selcuk University, Science Faculty, Department of Mathematics, 42075, Campus, Konya, Turkey
Abstract:

In this paper, we give the generalization \(\{G_{k,n}\}_{n\in N }\) of \(k\)-Fibonacci and \(k\)-Lucas numbers. After that, by using this generalization, some new algebraic properties on these numbers have been obtained.

Abstract:

Let \(K_q(n, R)\) denote the least cardinality of a \(q\)-ary code of length \(n\), such that every \(q\)-ary word of length \(n\) differs from at least one word in the code in at most \(R\) places. We use a method of Blass and Litsyn to derive the bounds \(K_4(5,2) \geq 14\) and \(K_4(6,2) \geq 32\).

T.Aaron Gulliver1
1T.A. Gulliver is with the Department of Electrical and Computer Engineering, Uni- versity of Victoria, Victoria, BC Canada, V8W 3P6
Abstract:

Let \(d_{q}(n,k)\) be the maximum possible minimum Hamming distance of a linear \([n, k]\) code over \(\mathbb{F}_q\). Tables of best known linear codes exist for all fields up to \(q = 9\). In this paper, linear codes over \(\mathbb{F}_{11}\) are constructed for \(k\) up to \(7\). The codes constructed are from the class of quasi-twisted codes. These results show that there exists a \((78,8)\) arc in \(\text{PG}(2,11)\). In addition, the minimum distances of the extended quadratic residue codes of lengths \(76\), \(88\) and \(108\) are determined.

E-mail Alert

Add your e-mail address to receive upcoming issues of Ars Combinatoria.

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;