
The stretched Littlewood-Richardson coefficient
In this work, we study type B set partitions for a given specific positive integer
Suppose that
Let
Using generating functions, we are proposing a unified approach to produce explicit formulas, which count the number of nodes in Smolyak grids based on various univariate quadrature or interpolation rules. Our approach yields, for instance, a new formula for the cardinality of a Smolyak grid, which is based on Chebyshev nodes of the first kind and it allows to recover certain counting-formulas previously found by Bungartz-Griebel, Kaarnioja, Müller-Gronbach, Novak-Ritter and Ullrich.
Topological indices have become an essential tool to investigate theoretical and practical problems in various scientific areas. In chemical graph theory, a significant research work, which is associated with the topological indices, is to deduce the ideal bounds and relationships between known topological indices. Mathematical development of the novel topological index is valid only if the topological index shows a good correlation with the physico-chemical properties of chemical compounds. In this article, the chemical applicability of the novel GQ and QG indices is calibrated over physico-chemical properties of 22 benzenoid hydrocarbons. The GQ and QG indices predict the physico-chemical properties of benzenoid hydrocarbons, significantly. Additionally, this work establishes some mathematical relationships between each of the GQ and QG indices and each of the graph invariants: size, degree sequences, maximum and minimum degrees, and some well-known degree-based topological indices of the graph.
In 2003, the frequency assignment problem in a cellular network motivated Even et al. to introduce a new coloring problem: Conflict-Free coloring. Inspired by this problem and by the Gardner-Bodlaender’s coloring game, in 2020, Chimelli and Dantas introduced the Conflict-Free Closed Neighborhood
This paper investigates the number of rooted biloopless nonseparable planar near-triangulations and presents some formulae for such maps with three parameters: the valency of root-face, the number of edges and the number of inner faces. All of them are almost summation-free.
A graph is 1-planar if it can be drawn on the plane so that each edge is crossed by at most one other edge. In this paper, we confirm the total-coloring conjecture for 1-planar graphs without 4-cycles with maximum degree
For a graph
An outer independent double Roman dominating function (OIDRDF) of a graph
(i) every vertex
(ii) every vertex
(iii) no two vertices assigned 0 are adjacent.
The weight of an OIDRDF is the sum of its function values over all vertices, and the outer independent double Roman domination number
Let
Given a connected graph
The degree of an edge
A proper total coloring of a graph
We study a discrete-time model for the spread of information in a graph, motivated by the idea that people believe a story when they learn of it from two different origins. Similar to the burning number, in this problem, information spreads in rounds and a new source can appear in each round. For a graph
An hourglass
Let
In this paper, it is pointed out that the definition of `Fibonacci
A
In this note, we establish six Gallai theorems involving twelve minority and majority parameters. Accordingly, the complexity problems corresponding to some of these parameters are obtained.
A
In this paper, we present a new combinatorial characterization of Hermitian cones in
In this paper we consider some new weighted and alternating weighted generalized Fibonomial sums and the corresponding
A new series of four-associate class partially balanced incomplete block designs in two replications has been proposed. The blocks of these designs are of two different sizes. The blocks can be divided into two groups such that every treatment appears in each group exactly once, and any two blocks belonging to two different groups have a constant number of treatments in common, i.e., these designs are affine resolvable.
Let
This paper investigates the Turan-like problem for
In this paper, we give a classification of all Mengerian
The
In a recent paper Cameron, Lakshmanan and Ajith [6] began an exploration of hypergraphs defined on algebraic structures, especially groups, to investigate whether this can add a new perspective. Following their suggestions, we consider suitable hypergraphs encoding the generating properties of a finite group. In particular, answering a question asked in their paper, we classified the finite solvable groups whose generating hypergraph is the basis hypergraph of a matroid.
Let
Behera and Panda defined a balancing number as a number b for which the sum of the numbers from
The secure edge dominating set of a graph
In this paper we contribute to the literature of computational chemistry by providing exact expressions for the detour index of joins of Hamilton-connected (
The geometrical properties of a plane determine the tilings that can be built on it. Because of the negative curvature of the hyperbolic plane, we may find several types of groups of symmetries in patterns built on such a surface, which implies the existence of an infinitude of possible tiling families. Using generating functions, we count the vertices of a uniform tiling from any fixed vertex. We count vertices for all families of valence
This study extends the concept of competition graphs to cubic fuzzy competition graphs by introducing additional variations including cubic fuzzy out-neighbourhoods, cubic fuzzy in-neighbourhoods, open neighbourhood cubic fuzzy graphs, closed neighbourhood cubic fuzzy graphs, cubic fuzzy (k) neighbourhood graphs and cubic fuzzy [k]-neighbourhood graphs. These variations provide further insights into the relationships and competition within the graph structure, each with its own defined characteristics and examples. These cubic fuzzy CMGs are further classified as cubic fuzzy k-competition graphs that show competition in the
A graph
A path
This note presents a counterexample to Propositions 7 and 8 in the paper [1], where the authors determine the values of
For a graph
For a graph
We classify the geometric hyperplanes of the Segre geometries, that is, direct products of two projective spaces. In order to do so, we use the concept of a generalised duality. We apply the classification to Segre varieties and determine precisely which geometric hyperplanes are induced by hyperplanes of the ambient projective space. As a consequence we find that all geometric hyperplanes are induced by hyperplanes of the ambient projective space if, and only if, the underlying field has order
A modification of Merino-Mǐcka-Mütze’s solution to a combinatorial generation problem of Knuth is proposed in this survey. The resulting alternate form to such solution is compatible with a reinterpretation by the author of a proof of existence of Hamilton cycles in the middle-levels graphs. Such reinterpretation is given in terms of a dihedral quotient graph associated to each middle-levels graph. The vertices of such quotient graph represent Dyck words and their associated ordered trees. Those Dyck words are linearly ordered via a rooted tree that covers all their tight, or irreducible, forms, offering an universal reference point of view to express and integrate the periodic paths, or blocks, whose concatenation leads to Hamilton cycles resulting from the said solution.
The hub cover pebbling number,
An outer independent double Roman dominating function (OIDRDF) on a graph
We introduce a two-player game where the goal is to illuminate all edges of a graph. At each step the first player, called Illuminator, taps a vertex. The second player, called Adversary, reveals the edges incident with that vertex (consistent with the edges incident with the already tapped vertices). Illuminator tries to minimize the taps needed, and the value of the game is the number of taps needed with optimal play. We provide bounds on the value in trees and general graphs. In particular, we show that the value for the path on
Let
Let
Let
One of the fundamental properties of the hypercube
1970-2025 CP (Manitoba, Canada) unless otherwise stated.