We study a discrete-time model for the spread of information in a graph, motivated by the idea that people believe a story when they learn of it from two different origins. Similar to the burning number, in this problem, information spreads in rounds and a new source can appear in each round. For a graph \(G\), we are interested in \(b_2(G)\), the minimum number of rounds until the information has spread to all vertices of graph \(G\). We are also interested in finding \(t_2(G)\), the minimum number of sources necessary so that the information spreads to all vertices of \(G\) in \(b_2(G)\) rounds. In addition to general results, we find \(b_2(G)\) and \(t_2(G)\) for the classes of spiders and wheels and show that their behavior differs with respect to these two parameters. We also provide examples and prove upper bounds for these parameters for Cartesian products of graphs.
An hourglass \(\Gamma_0\) is the graph with degree sequence \(\{4,2,2,2,2\}\). In this paper, for integers \(j\geq i\geq 1\), the bull \(B_{i,j}\) is the graph obtained by attaching endvertices of two disjoint paths of lengths \(i,j\) to two vertices of a triangle. We show that every 3-connected \(\{K_{1,3},\Gamma_0,X\}\)-free graph, where \(X\in \{ B_{2,12},\,B_{4,10},\,B_{6,8}\}\), is Hamilton-connected. Moreover, we give an example to show the sharpness of our result, and complete the characterization of forbidden induced bulls implying Hamilton-connectedness of a 3-connected {claw, hourglass, bull}-free graph.
Let \(G=(V,E)\) be a simple connected graph with vertex set \(V\) and edge set \(E\). The Randić index of graph \(G\) is the value \(R(G)=\sum_{uv\in E(G)} \frac{1}{\sqrt{d(u)d(v)}}\), where \(d(u)\) and \(d(v)\) refer to the degree of the vertices \(u\) and \(v\). We obtain a lower bound for the Randić index of trees in terms of the order and the Roman domination number, and we characterize the extremal trees for this bound.
In this paper, it is pointed out that the definition of `Fibonacci \((p,r)\)-cube’ in many papers (denoted by \(I\Gamma_{n}^{(p,r)}\)) is incorrect. The graph \(I\Gamma_{n}^{(p,r)}\) is not the same as the original one (denoted by \(O\Gamma_{n}^{(p,r)}\)) introduced by Egiazarian and Astola. First, it is shown that \(I\Gamma_{n}^{(p,r)}\) and \(O\Gamma_{n}^{(p,r)}\) have different recursive structure. Then, it is proven that all the graphs \(O\Gamma_{n}^{(p,r)}\) are partial cubes. However, only a small part of graphs \(I\Gamma_{n}^{(p,r)}\) are partial cubes. It is also shown that \(I\Gamma_{n}^{(p,r)}\) and \(O\Gamma_{n}^{(p,r)}\) have different medianicity. Finally, several questions are listed for further investigation.
A \(q\)-total coloring of \(G\) is an assignment of \(q\) colors to the vertices and edges of \(G\), so that adjacent or incident elements have different colors. The Total Coloring Conjecture (TCC) asserts that a total coloring of a graph \(G\) has at least \(\Delta+1\) and at most \(\Delta+2\) colors. In this paper, we determine that all members of new infinite families of snarks obtained by the Kochol superposition of Goldberg and Loupekine with Blowup and Semiblowup snarks are Type~1. These results contribute to a question posed by Brinkmann, Preissmann and D. Sasaki (2015) by presenting negative evidence about the existence of Type~2 cubic graphs with girth at least 5.
In this note, we establish six Gallai theorems involving twelve minority and majority parameters. Accordingly, the complexity problems corresponding to some of these parameters are obtained.
A \(k\)-tree is a graph that can be formed by starting with \(K_{k+1}\) and iterating the operation of making a new vertex adjacent to all the vertices of a \(k\)-clique of the existing graph. A structural characterization of 3-trees with diameter at most 2 is proven. This implies a corollary for planar 3-trees which leads to a description of their degree sequences.
In this paper, we present a new combinatorial characterization of Hermitian cones in \(\mathrm{PG}(3,q^2)\).
In this paper we consider some new weighted and alternating weighted generalized Fibonomial sums and the corresponding \(q-\)forms. A generalized form of weight sequences which contains squares in subscripts is discussed for the first time in the literature. The main key to get success in sums is an ability to change one sum into another that is simpler in some way. Thus, in order to prove these sums by doing some manipulations and tricks, our approach is to use classical \(q-\)analysis, in particular a formula of Rothe, a version of Cauchy binomial theorem and Gauss identity.
A new series of four-associate class partially balanced incomplete block designs in two replications has been proposed. The blocks of these designs are of two different sizes. The blocks can be divided into two groups such that every treatment appears in each group exactly once, and any two blocks belonging to two different groups have a constant number of treatments in common, i.e., these designs are affine resolvable.
Let \( 0<k\in\mathbb{Z} \). Let the star 2-set transposition graph \( ST^2_k \) be the \( (2k-1) \)-regular graph whose vertices are the \( 2k \)-strings on \( k \) symbols, each symbol repeated twice, with its edges given each by the transposition of the initial entry of one such \( 2k \)-string with any entry that contains a different symbol than that of the initial entry. The pancake 2-set transposition graph \( PC^2_k \) has the same vertex set of \( ST^2_k \) and its edges involving each the maximal product of concentric disjoint transpositions in any prefix of an endvertex string, including the external transposition being that of an edge of \( ST^2_k \). For \( 1<k\in\mathbb{Z} \), we show that \( ST^2_k \) and \( PC^2_k \), among other intermediate transposition graphs, have total colorings via \( 2k-1 \) colors. They, in turn, yield efficient dominating sets, or E-sets, of the vertex sets of \( ST^2_k \) and \( PC^2_k \), and partitions into \( 2k-1 \) such E-sets, generalizing Dejter-Serra work on E-sets in such graphs.
This paper investigates the Turan-like problem for \(\mathcal{K}^-_{r + 1}\)-free \((r \geq 2)\) unbalanced signed graphs, where \(\mathcal{K}^-_{r + 1}\) is the set of unbalanced signed complete graphs with \(r+1\) vertices. The maximum number of edges and the maximum index for \(\mathcal{K}^-_{r + 1}\)-free unbalanced signed graphs are given. Moreover, the extremal \(\mathcal{K}^-_{r + 1}\)-free unbalanced signed graphs with the maximum index are characterized.
In this paper, we give a classification of all Mengerian \(4\)-uniform hypergraphs derived from graphs.
The \( n \)-dimensional Möbius cube \( MQ_n \) is an important variant of the hypercube \( Q_n \), which possesses some properties superior to the hypercube. This paper investigates the fault-tolerant edge-pancyclicity of \( MQ_n \), and shows that if \( MQ_n \) (\( n \geq 5 \)) contains at most \( n-2 \) faulty vertices and/or edges then, for any fault-free edge \( uv \) in \( MQ_n^i (i=0,1) \) and any integer \( \ell \) with \( 7-i \leqslant \ell \leqslant 2^n – f_v \), there is a fault-free cycle of length \( \ell \) containing the edge \( uv \), where \( f_v \) is the number of faulty vertices. The result is optimal in some senses.
In a recent paper Cameron, Lakshmanan and Ajith [6] began an exploration of hypergraphs defined on algebraic structures, especially groups, to investigate whether this can add a new perspective. Following their suggestions, we consider suitable hypergraphs encoding the generating properties of a finite group. In particular, answering a question asked in their paper, we classified the finite solvable groups whose generating hypergraph is the basis hypergraph of a matroid.
Let \( G \) be a graph, the zero forcing number \( Z(G) \) is the minimum of \( |Z| \) over all zero forcing sets \( Z \subseteq V(G) \). In this paper, we are interested in studying the zero forcing number of quartic circulant graphs \( C_{p}\left(s,t\right) \), where \( p \) is an odd prime. Based on the fact that \( C_{p}\left(s,t\right) \cong C_{p}\left(1,q\right) \), we give the exact values of the zero forcing number of some specific quartic circulant graphs.
Behera and Panda defined a balancing number as a number b for which the sum of the numbers from \(1\) to \(b – 1\) is equal to the sum of the numbers from \(b + 1\) to \(b + r\) for some r. They also classified all such numbers. We define two notions of balancing numbers for Farey fractions and enumerate all possible solutions. In the stricter definition, there is exactly one solution, whereas in the weaker one all sufficiently large numbers work. We also define notions of balancing numbers for levers and mobiles, then show that these variants have many acceptable arrangements. For an arbitrary mobile, we prove that we can place disjoint consecutive sequences at each of the leaves and still have the mobile balance. However, if we impose certain additional restrictions, then it is impossible to balance a mobile.
The secure edge dominating set of a graph \( G \) is an edge dominating set \( F \) with the property that for each edge \( e \in E-F \), there exists \( f \in F \) adjacent to \( e \) such that \( (F-\{f\})\cup \{e\} \) is an edge dominating set. In this paper, we obtained upper bounds for edge domination and secure edge domination number for Mycielski of a tree.
In this paper we contribute to the literature of computational chemistry by providing exact expressions for the detour index of joins of Hamilton-connected (\(HC\)) graphs. This improves upon existing results by loosening the requirement of a molecular graph being Hamilton-connected and only requirement certain subgraphs to be Hamilton-connected.
The geometrical properties of a plane determine the tilings that can be built on it. Because of the negative curvature of the hyperbolic plane, we may find several types of groups of symmetries in patterns built on such a surface, which implies the existence of an infinitude of possible tiling families. Using generating functions, we count the vertices of a uniform tiling from any fixed vertex. We count vertices for all families of valence \(5\) and for general vertices with valence \(6\), with even-sized faces. We also give some general results about the behavior of the vertices and edges of the tilings under consideration.
This study extends the concept of competition graphs to cubic fuzzy competition graphs by introducing additional variations including cubic fuzzy out-neighbourhoods, cubic fuzzy in-neighbourhoods, open neighbourhood cubic fuzzy graphs, closed neighbourhood cubic fuzzy graphs, cubic fuzzy (k) neighbourhood graphs and cubic fuzzy [k]-neighbourhood graphs. These variations provide further insights into the relationships and competition within the graph structure, each with its own defined characteristics and examples. These cubic fuzzy CMGs are further classified as cubic fuzzy k-competition graphs that show competition in the \(k\)th order between components, \(p\)-competition cubic fuzzy graphs that concentrate on competition in terms of membership degrees, and \(m\)-step cubic fuzzy competition graphs that analyze competition in terms of steps. Further, some related results about independent strong vertices and edges have been obtained for these cubic fuzzy competition graph classes. Finally, the proposed concept of cubic fuzzy competition graphs is supported by a numerical example. This example showcases how the framework of cubic fuzzy competition graphs can be practically applied to the predator-prey model to illustrate the representation and analysis of ambiguous information within the graph structures.
A graph \( X \) is \( k \)-spanning cyclable if for any subset \( S \) of \( k \) distinct vertices there is a 2-factor of \( X \) consisting of \( k \) cycles such that each vertex in \( S \) belongs to a distinct cycle. In this paper, we examine the \( k \)-spanning cyclability of 4-valent Cayley graphs on Abelian groups.
A path \(x_1, x_2, \dots, x_n\) in a connected graph \( G \) that has no edge \( x_i x_j \) \((j \geq i+3)\) is called a monophonic-triangular path or mt-path. A non-empty subset \( M \) of \( V(G) \) is a monophonic-triangular set or mt-set of \( G \) if every member in \( V(G) \) exists in a mt-path joining some pair of members in \( M \). The monophonic-triangular number or mt-number is the lowest cardinality of an mt-set of \( G \) and it is symbolized by \( mt(G) \). The general properties satisfied by mt-sets are discussed. Also, we establish \( mt \)-number boundaries and discover similar results for a few common graphs. Graphs \( G \) of order \( p \) with \( mt(G) = p \), \( p – 1 \), or \( p – 2 \) are characterized.
This note presents a counterexample to Propositions 7 and 8 in the paper [1], where the authors determine the values of \( V \) and \( W \). These values are crucial in determining the Hamming distance and MDS codes in the family of certain constacyclic codes over \(\mathbb{F}_{p^m}[u]/\langle u^3 \rangle\), which implies that the results found in [2] are incorrect. Furthermore, we provide corrections to the aforementioned results.
For a graph \( G \) and for non-negative integers \( p, q \) and \( r \), the triplet \( (p, q, r) \) is said to be an admissible triplet, if \( 3p + 4q + 6r = |E(G)| \). If \( G \) admits a decomposition into \( p \) cycles of length \( 3 \), \( q \) cycles of length \( 4 \), and \( r \) cycles of length \( 6 \) for every admissible triplet \( (p, q, r) \), then we say that \( G \) has a \( \{C_{3}^{p}, C_{4}^{q}, C_{6}^{r}\} \)-decomposition. In this paper, the necessary conditions for the existence of \( \{C_{3}^{p}, C_{4}^{q}, C_{6}^{r}\} \)-decomposition of \( K_{\ell, m, n}(\ell \leq m \leq n) \) are proved to be sufficient. This affirmatively answers the problem raised in \emph{Decomposing complete tripartite graphs into cycles of lengths \( 3 \) and \( 4 \), Discrete Math. 197/198 (1999), 123-135}. As a corollary, we deduce the main results of \emph{Decomposing complete tripartite graphs into cycles of lengths \( 3 \) and \( 4 \), Discrete Math., 197/198, 123-135 (1999)} and \emph{Decompositions of complete tripartite graphs into cycles of lengths \( 3 \) and \( 6 \), Austral. J. Combin., 73(1), 220-241 (2019)}.
For a graph \( G \) and a subgraph \( H \) of a graph \( G \), an \( H \)-decomposition of the graph \( G \) is a partition of the edge set of \( G \) into subsets \( E_i \), \( 1 \leq i \leq k \), such that each \( E_i \) induces a graph isomorphic to \( H \). In this paper, it is proved that every simple connected unicyclic graph of order five decomposes the \( \lambda \)-fold complete equipartite graph whenever the necessary conditions are satisfied. This generalizes a result of Huang, *Utilitas Math.* 97 (2015), 109–117.
We classify the geometric hyperplanes of the Segre geometries, that is, direct products of two projective spaces. In order to do so, we use the concept of a generalised duality. We apply the classification to Segre varieties and determine precisely which geometric hyperplanes are induced by hyperplanes of the ambient projective space. As a consequence we find that all geometric hyperplanes are induced by hyperplanes of the ambient projective space if, and only if, the underlying field has order \(2\) or \(3\).
A modification of Merino-Mǐcka-Mütze’s solution to a combinatorial generation problem of Knuth is proposed in this survey. The resulting alternate form to such solution is compatible with a reinterpretation by the author of a proof of existence of Hamilton cycles in the middle-levels graphs. Such reinterpretation is given in terms of a dihedral quotient graph associated to each middle-levels graph. The vertices of such quotient graph represent Dyck words and their associated ordered trees. Those Dyck words are linearly ordered via a rooted tree that covers all their tight, or irreducible, forms, offering an universal reference point of view to express and integrate the periodic paths, or blocks, whose concatenation leads to Hamilton cycles resulting from the said solution.
The hub cover pebbling number, \(h^{*}(G)\), of a graph $G$, is the least non-negative integer such that from all distributions of \(h^{*}(G)\) pebbles over the vertices of \(G\), it is possible to place at least one pebble each on every vertex of a set of vertices of a hub set for \(G\) using a sequence of pebbling move operations, each pebbling move operation removes two pebbles from a vertex and places one pebble on an adjacent vertex. Here we compute the hub cover pebbling number for wheel related graphs.
An outer independent double Roman dominating function (OIDRDF) on a graph \( G \) is a function \( f : V(G) \to \{0, 1, 2, 3\} \) having the property that (i) if \( f(v) = 0 \), then the vertex \( v \) must have at least two neighbors assigned 2 under \( f \) or one neighbor \( w \) with \( f(w) = 3 \), and if \( f(v) = 1 \), then the vertex \( v \) must have at least one neighbor \( w \) with \( f(w) \ge 2 \) and (ii) the subgraph induced by the vertices assigned 0 under \( f \) is edgeless. The weight of an OIDRDF is the sum of its function values over all vertices, and the outer independent double Roman domination number \( \gamma_{oidR}(G) \) is the minimum weight of an OIDRDF on \( G \). The \( \gamma_{oidR} \)-stability (\( \gamma^-_{oidR} \)-stability, \( \gamma^+_{oidR} \)-stability) of \( G \), denoted by \( {\rm st}_{\gamma_{oidR}}(G) \) (\( {\rm st}^-_{\gamma_{oidR}}(G) \), \( {\rm st}^+_{\gamma_{oidR}}(G) \)), is defined as the minimum size of a set of vertices whose removal changes (decreases, increases) the outer independent double Roman domination number. In this paper, we determine the exact values on the \( \gamma_{oidR} \)-stability of some special classes of graphs, and present some bounds on \( {\rm st}_{\gamma_{oidR}}(G) \). In addition, for a tree \( T \) with maximum degree \( \Delta \), we show that \( {\rm st}_{\gamma_{oidR}}(T) = 1 \) and \( {\rm st}^-_{\gamma_{oidR}}(T) \le \Delta \), and characterize the trees that achieve the upper bound.
We introduce a two-player game where the goal is to illuminate all edges of a graph. At each step the first player, called Illuminator, taps a vertex. The second player, called Adversary, reveals the edges incident with that vertex (consistent with the edges incident with the already tapped vertices). Illuminator tries to minimize the taps needed, and the value of the game is the number of taps needed with optimal play. We provide bounds on the value in trees and general graphs. In particular, we show that the value for the path on \( n \) vertices is \( \frac{2}{3} n + O(1) \), and there is a constant \( \varepsilon > 0 \) such that for every caterpillar on \( n \) vertices, the value is at most \( (1 – \varepsilon) n + 1 \).
Let \(G\) be a group, and let \(c\in\mathbb{Z}^+\cup\{\infty\}\). We let \(\sigma_c(G)\) be the maximal size of a subset \(X\) of \(G\) such that, for any distinct \(x_1,x_2\in X\), the group \(\langle x_1,x_2\rangle\) is not \(c\)-nilpotent; similarly we let \(\Sigma_c(G)\) be the smallest number of \(c\)-nilpotent subgroups of \(G\) whose union is equal to \(G\). In this note we study \(D_{2k}\), the dihedral group of order \(2k\). We calculate \(\sigma_c(D_{2k})\) and \(\Sigma_c(D_{2k})\), and we show that these two numbers coincide for any given \(c\) and \(k\).
Let \(p > 2\) be prime and \(r \in \{1,2, \ldots, p-1\}\). Denote by \(c_{p}(n)\) the number of \(p\)-regular partitions of \(n\) in which parts can occur not more than three times. We prove the following: If \(8r + 1\) is a quadratic non-residue modulo \(p\), \(c_{p}(pn + r) \equiv 0 \pmod{2}\) for all nonnegative integers \(n\).
Let \( G=(V,E) \) be a simple connected graph with vertex set \( G \) and edge set \( E \). The harmonic index of graph \( G \) is the value \( H(G)=\sum_{uv\in E(G)} \frac{2}{d_u+d_v} \), where \( d_x \) refers to the degree of \( x \). We obtain an upper bound for the harmonic index of trees in terms of order and the total domination number, and we characterize the extremal trees for this bound.
One of the fundamental properties of the hypercube \( Q_n \) is that it is bipancyclic as \( Q_n \) has a cycle of length \( l \) for every even integer \( l \) with \( 4 \leq l \leq 2^n \). We consider the following problem of generalizing this property: For a given integer \( k \) with \( 3 \leq k \leq n \), determine all integers \( l \) for which there exists an \( l \)-vertex, \( k \)-regular subgraph of \( Q_n \) that is both \( k \)-connected and bipancyclic. The solution to this problem is known for \( k = 3 \) and \( k = 4 \). In this paper, we solve the problem for \( k = 5 \). We prove that \( Q_n \) contains a \( 5 \)-regular subgraph on \( l \) vertices that is both \( 5 \)-connected and bipancyclic if and only if \( l \in \{32, 48\} \) or \( l \) is an even integer satisfying \( 52 \leq l \leq 2^n \). For general \( k \), we establish that every \( k \)-regular subgraph of \( Q_n \) has \( 2^k, 2^k + 2^{k-1} \) or at least \( 2^k + 2^{k-1} + 2^{k-3} \) vertices.
Coded caching technology can better alleviate network traffic congestion. Since many of the centralized coded caching schemes now in use have high subpacketization, which makes scheme implementation more challenging, coded caching schemes with low subpacketization offer a wider range of practical applications. It has been demonstrated that the coded caching scheme can be achieved by creating a combinatorial structure named placement delivery array (PDA). In this work, we employ vector space over a finite field to obtain a class of PDA, calculate its parameters, and consequently achieve a coded caching scheme with low subpacketization. Subsequently, we acquire a new MN scheme and compare it with the new scheme developed in this study. The subpacketization \(F\) of the new scheme has significant advantages. Lastly, the number of users \(K\), cache fraction \(\frac{M}{N}\), and subpacketization \(F\) have advantages to some extent at the expense of partial transmission rate \(R\) when compared to the coded caching scheme in other articles.
We continue the study of Token Sliding (reconfiguration) graphs of independent sets initiated by the authors in an earlier paper [Graphs Comb. 39.3, 59, 2023]. Two of the topics in that paper were to study which graphs \(G\) are Token Sliding graphs and which properties of a graph are inherited by a Token Sliding graph. In this paper, we continue this study specializing in the case of when \(G\) and/or its Token Sliding graph \(\mathsf{TS}_k(G)\) is a tree or forest, where \(k\) is the size of the independent sets considered. We consider two problems. The first is to find necessary and sufficient conditions on \(G\) for \(\mathsf{TS}_k(G)\) to be a forest. The second is to find necessary and sufficient conditions for a tree or forest to be a Token Sliding graph. For the first problem, we give a forbidden subgraph characterization for the cases of \(k=2,3\). For the second problem, we show that for every \(k\)-ary tree \(T\) there is a graph \(G\) for which \(\mathsf{TS}_{k+1}(G)\) is isomorphic to \(T\). A number of other results are given along with a join operation that aids in the construction of \(\mathsf{TS}_k\)-graphs.
In this paper, we introduce graceful and near graceful labellings of several families of windmills. In particular, we use Skolem-type sequences to prove (near) graceful labellings exist for windmills with \(C_{3}\) and \(C_{4}\) vanes, and infinite families of \(3,5\)-windmills and \(3,6\)-windmills. Furthermore, we offer a new solution showing that the graph obtained from the union of \(t\) 5-cycles with one vertex in common (\(C_{5}^{t}\)) is graceful if and only if \(t \equiv 0, 3 \pmod{4}\) and near graceful when \(t \equiv 1, 2 \pmod{4}\).
We study groups generated by sets of pattern avoiding permutations. In the first part of the paper, we prove some general results concerning the structure of such groups. In particular, we consider the sequence \((G_n)_{n \geq 0}\), where \(G_n\) is the group generated by a subset of the symmetric group \(S_n\) consisting of permutations that avoid a given set of patterns. We analyze under which conditions the sequence \((G_n)_{n \geq 0}\) is eventually constant. Moreover, we find a set of patterns such that \((G_n)_{n \geq 0}\) is eventually equal to an assigned symmetric group. Furthermore, we show that any non-trivial simple group cannot be obtained in this way and describe all the non-trivial abelian groups that arise in this way. In the second part of the paper, we carry out a case-by-case analysis of groups generated by permutations avoiding a few short patterns.
We consider the eccentric graph of a graph \(G\), denoted by \(\mathrm{ecc}(G)\), which has the same vertex set as \(G\), and two vertices in the eccentric graph are adjacent if and only if their distance in \(G\) is equal to the eccentricity of one of them. In this paper, we present a fundamental requirement for the isomorphism between \(\mathrm{ecc}(G)\) and the complement of \(G\), and show that the previous necessary condition given in the literature is inadequate. Also, we obtain that the diameter of \(\mathrm{ecc}(T)\) is at most 3 for any tree and get some characterizations of the eccentric graph of trees.
Let \(G\) be a finite simple undirected \((p, q)\)-graph, with vertex set \(V(G)\) and edge set \(E(G)\) such that \(p = |V(G)|\) and \(q = |E(G)|\). A super edge-magic total labeling \(f\) of \(G\) is a bijection \(f \colon V(G) \cup E(G) \longrightarrow \{1, 2, \dots, p+q\}\) such that for all edges \(uv \in E(G)\), \(f(u) + f(v) + f(uv) = c(f)\), where \(c(f)\) is called a magic constant, and \(f(V(G)) = \{1, \dots, p\}\). The minimum of all \(c(f)\), where the minimum is taken over all the super edge-magic total labelings \(f\) of \(G\), is defined to be the super edge-magic total strength of the graph \(G\). In this article, we work on certain classes of unicyclic graphs and provide evidence to conjecture that the super edge-magic total strength of a certain family of unicyclic \((p, q)\)-graphs is equal to \(2q + \frac{n+3}{2}\).
For a poset \(P = C_a \times C_b\), a subset \(A \subseteq P\) is called a chain blocker for \(P\) if \(A\) is inclusion-wise minimal with the property that every maximal chain in \(P\) contains at least one element of \(A\), where \(C_i\) is the chain \(1 < \cdots < i\). In this article, we define the shelter of the poset \(P\) to give a complete description of all chain blockers of \(C_5 \times C_b\) for \(b \geq 1\).
This project aims at investigating properties of channel detecting codes on specific domains \(1^+0^+\). We focus on the transmission channel with deletion errors. Firstly, we discuss properties of channels with deletion errors. We propose a certain kind of code that is a channel detecting (abbr. \(\gamma\)-detecting) code for the channel \(\gamma = \delta(m, N)\) where \(m < N\). The characteristic of this \(\gamma\)-detecting code is considered. One method is provided to construct \(\gamma\)-detecting code. Finally, we also study a kind of special channel code named \(\tau(m, N)\)-srp code.
A chemical structure specifies the molecular geometry of a given molecule or solid in the form of atom arrangements. One way to analyze its properties is to simulate its formation as a product of two or more simpler graphs. In this article, we take this idea to find upper and lower bounds for the generalized Randić index \(\mathcal{R}_{\alpha}\) of four types of graph products, using combinatorial inequalities. We finish this paper by providing the bounds for \(\mathcal{R}_{\alpha}\) of a line graph and rooted product of graphs.
Let \(G\) be a \((p, q)\) graph. Let \(f: V(G) \to \{1, 2, \ldots, k\}\) be a map where \(k \in \mathbb{N}\) is a variable and \(k > 1\). For each edge \(uv\), assign the label \(\gcd(f(u), f(v))\). \(f\) is called \(k\)-Total prime cordial labeling of \(G\) if \(\left|t_{f}(i) – t_{f}(j)\right| \leq 1\), \(i, j \in \{1, 2, \ldots, k\}\) where \(t_{f}(x)\) denotes the total number of vertices and edges labeled with \(x\). A graph with a \(k\)-total prime cordial labeling is called \(k\)-total prime cordial graph. In this paper, we investigate the 4-total prime cordial labeling of some graphs like dragon, Möbius ladder, and corona of some graphs.
Let \(G = (V, E)\) be a graph with vertex set \(V\) and edge set \(E\). An edge labeling \(f: E \to Z_{2}\) induces a vertex labeling \(f^{+} : V \to Z_{2}\) defined by \( f^{+}(v) \equiv \sum_{uv \in E} f(uv) \pmod 2 \), for each vertex \(v \in V\). For \(i \in Z_{2}\), let \( v_{f}(i) = |\{v \in V : f^+(v) = i\}| \) and \( e_{f}(i) = |\{e \in E : f(e) = i\}| \). An edge labeling \(f\) of a graph \(G\) is said to be edge-friendly if \( |e_{f}(1) – e_{f}(0)| \le 1 \). The set \(\{v_f(1) – v_f(0) : f \text{ is an edge-friendly labeling of } G\}\) is called the full edge-friendly index set of \(G\). In this paper, we shall determine the full edge-friendly index sets of one point union of cycles.
After the Chartrand definition of graph labeling, since 1988 many graph families have been labeled through mathematical techniques. A basic approach in those labelings was to find a pattern among the labels and then prove them using sequences and series formulae. In 2018, Asim applied computer-based algorithms to overcome this limitation and label such families where mathematical solutions were either not available or the solution was not optimum. Asim et al. in 2018 introduced the algorithmic solution in the area of edge irregular labeling for computing a better upper-bound of the complete graph \(es(K_n)\) and a tight upper-bound for the complete \(m\)-ary tree \({es(T}_{m,h})\) using computer-based experiments. Later on, more problems like complete bipartite and circulant graphs were solved using the same technique. Algorithmic solutions opened a new horizon for researchers to customize these algorithms for other types of labeling and for more complex graphs. In this article, to compute edge irregular \(k\)-labeling of star \(S_{m,n}\) and banana tree \({BT}_{m,n}\), new algorithms are designed, and results are obtained by executing them on computers. To validate the results of computer-based experiments with mathematical theorems, inductive reasoning is adopted. Tabulated results are analyzed using the law of double inequality and it is concluded that both families of trees observe the property of edge irregularity strength and are tight for \(\left\lceil \frac{|V|}{2} \right\rceil\)-labeling.
A graph \(G\) is called a fractional ID-\((g,f)\)-factor-critical covered graph if for any independent set \(I\) of \(G\) and for every edge \(e \in E(G-I)\), \(G-I\) has a fractional \((g,f)\)-factor \(h\) such that \(h(e) = 1\). We give a sufficient condition using degree condition for a graph to be a fractional ID-\((g,f)\)-factor-critical covered graph. Our main result is an extension of Zhou, Bian, and Wu’s previous result [S. Zhou, Q. Bian, J. Wu, A result on fractional ID-\(k\)-factor-critical graphs, Journal of Combinatorial Mathematics and Combinatorial Computing 87(2013) 229–236] and Yashima’s previous result [T. Yashima, A degree condition for graphs to be fractional ID-\([a,b]\)-factor-critical, Australasian Journal of Combinatorics 65(2016) 191–199].
In this article, we define \(q\)-generalized Fibonacci polynomials and \(q\)-generalized Lucas polynomials using \(q\)-binomial coefficient and obtain their recursive properties. In addition, we introduce generalized \(q\)-Fibonacci matrix and generalized \(q\)-Lucas matrix, then we derive their basic identities. We define \((k,q,t)\)-symmetric generalized Fibonacci matrix and \((k,q,t)\)-symmetric generalized Lucas matrix, then we give the Cholesky factorization of these matrices. Finally, we give determinantal and permanental representations of these new polynomial sequences.
Stanley considered Dyck paths where each maximal run of down-steps to the \(x\)-axis has odd length; they are also enumerated by (shifted) Catalan numbers. Prefixes of these combinatorial objects are enumerated using the kernel method. A more challenging version of skew Dyck paths combined with Stanley’s restriction is also considered.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.