Sarmad Abbasi1
1Department of Computer Science Sukkur Institute of Business Administration Airport Road Sukkur 65200 Sindh, Pakistan
Abstract:

Let \(T_n\) denote a complete binary tree of depth \(n\). Each internal node \(v\) of \(T_n\) has two children denoted by \(\text{left}(v)\) and \(\text{right}(v)\). Let \(f\) be a function mapping each internal node \(v\) to \(\{\text{left}(v), \text{right}(v)\}\). This naturally defines a path from the root, \(\lambda\), of \(T_n\) to one of its leaves given by

\[\lambda, f(\lambda), f^2(\lambda), \ldots f^n(\lambda).\]

We consider the problem of finding this path via a deterministic algorithm that probes the values of \(f\) in parallel. We show that any algorithm that probes \(k\) values of \(f\) in one round requires \(\frac{n}{\lfloor \log(k+1) \rfloor}\) rounds in the worst case. This indicates that the amount of information that can be extracted in parallel is, at times, strictly less than the amount of information that can be extracted sequentially.

Jiansheng Cai1, Liansheng Ge2, Xia Zhang3, Guizhen Liu2
1School of Mathematics and Information Sciences Weifang University, Weifang, 261061, P.R.China.
2School of Mathematics, Shandong University, Jinan, 250100, P.R.China.
3College of Mathematics Sciences, Shandong Normal University, Jinan 250014, P.R.China.
Abstract:

A graph \(G\) is edge-\(L\)-colorable, if for a given edge assignment \(L = \{L(e) : e \in E(G)\}\), there exists a proper edge-coloring \(\phi\) of \(G\) such that \(\phi(e) \in L(e)\) for all \(e \in E(G)\). If \(G\) is edge-\(L\)-colorable for every edge assignment \(L\) with \(|L(e)| \geq k\) for \(e \in E(G)\), then \(G\) is said to be edge-\(k\)-choosable. In this paper, we prove that if \(G\) is a planar graph without chordal \(7\)-cycles, then \(G\) is edge-\(k\)-choosable, where \(k = \max\{8, \Delta(G) + 1\}\).

Sei-Ichiro Ueki1
1FACULTY OF ENGINEERING, IBARAKI UNIVERSITY, HITACH! 316 – 8511, JAPAN
Abstract:

In this note, we study some properties of the composition operator \(C_\varphi\) on the Fock space \(\mathcal{F}_X^2\) of \(X\)-valued analytic functions in \(\mathbb{C}\). We give a necessary and sufficient condition for a bounded operator on \(\mathcal{F}_X^2\) to be a composition operator and for the adjoint operator of a composition operator to be also a composition operator on \(\mathcal{F}_X^2\). We also give characterizations of normal, unitary, and co-isometric composition operators on \(\mathcal{F}_X^2\).

Boram Park1, Yoshio Sano2
1Department of Mathematics Education Seoul National University, Seoul 151-742, Korea
2Pohang Mathematics Institute POSTECH, Pohang 790-784, Korea
Abstract:

The competition hypergraph \(C\mathcal{H}(D)\) of a digraph \(D\) is the hypergraph such that the vertex set is the same as \(D\) and \(e \subseteq V(D)\) is a hyperedge if and only if \(e\) contains at least \(2\) vertices and \(e\) coincides with the in-neighborhood of some vertex \(v\) in the digraph \(D\). Any hypergraph with sufficiently many isolated vertices is the competition hypergraph of an acyclic digraph. The hypercompetition number \(hk(\mathcal{H})\) of a hypergraph \(\mathcal{H}\) is defined to be the smallest number of such isolated vertices.

In this paper, we study the hypercompetition numbers of hypergraphs. First, we give two lower bounds for the hypercompetition numbers which hold for any hypergraphs. And then, by using these results, we give the exact hypercompetition numbers for some family of uniform hypergraphs. In particular, we give the exact value of the hypercompetition number of a connected graph.

Chuan-Min Lee1
1Department of Computer and Communication Engineering Ming Chuan University 5 De Ming Rd., Guishan District, Taoyuan County 333, Taiwan.
Abstract:

In this paper, we study the signed and minus total domination problems for two subclasses of bipartite graphs: biconvex bipartite graphs and planar bipartite graphs. We present a unified method to solve the signed and minus total domination problems for biconvex bipartite graphs in \(O(n + m)\) time. We also prove that the decision problem corresponding to the signed (respectively, minus) total domination problem is NP-complete for planar bipartite graphs of maximum degree \(3\) (respectively, maximum degree \(4\)).

Mahdieh Azari1, Ali Iranmanesh2
1Department of Mathematics, Science and Research Branch, Islamic Azad University P. O. Box: 14515-1775, Tehran, Iran
2Department of Mathematics, Tarbiat Modares University P. O. Box: 14115-137, Tehran, Iran
Abstract:

The edge versions of Wiener index, which were based on distance between two edges in a connected graph \(G\), were introduced by Iranmanesh et al. in \(2008\). In this paper, we find the edge Wiener indices of the sum of graphs. Then as an application of our results, we find the edge Wiener indices of graphene, \(C_4\)-nanotubes and \(C_4\)-nanotori.

Wei Wang1, Ni-Ni Xue1
1College of Information Engineering, Tarim University, Alar, Xinjiang, 843300, P.R.China
Abstract:

Let \(\kappa(G)\) be the connectivity of \(G\) and \(G \times H\) the direct product of \(G\) and \(H\). We prove that for any graphs \(G\) and \(K\), with \(n \geq 3\),\(\kappa(G \times K_n) = \min\{n\kappa(G), (n-1)\delta(G)\},\) which was conjectured by Guji and Vumar.

Recep Sahin1, Abdullah Altin2
1 Ankara University, Faculty of Science Department of Mathematics Ankara/ TURKEY
2Eastern Mediterranean University Department of Mathematics Mersin/ TURKEY
Abstract:

The main aim of this paper is to construct an extension of Appell’s hypergeometric functions by means of modified Beta functions \(B(x, y; p)\). We give integral representations for these functions and obtain some relations for these functions and extended Gauss hypergeometric function via decomposition operators defined by Burchnall and Chaundy. Furthermore, we present some transformation formulas for the first and second kind of extended Appell’s hypergeometric functions. Also, we give some relations between the first kind of extended Appell’s hypergeometric functions, Whittaker, and Modified Bessel functions.

Yanxun Chang1, Giovanni Lo Faro2, Antoinette Tripodi2
1Institute of Mathematics Beijing Jiaotong University Beijing 100044, P. R. China
2Department of Mathematics University of Messina Contrada Papardo, 31 – 98166, Sant’ Agata, Messina, Italy
Abstract:

Informally, a \(\epsilon\)-switchable \(G\)-design is a decomposition of the complete graph into subgraphs of isomorphic copies of \(G\) which have the property that they remain a \(G\)-decomposition when \(\epsilon\)-edge switches are made to the subgraphs. This paper determines the spectrum of \(\epsilon\)-switchable \(G\)-designs where \(G\) is a kite (a triangle with an edge attached) and \(\epsilon\) takes \(t\)-edge, \(h\)-edge, and \(l\)-edge.

Jishe Feng1
1DEPARTMENT OF MATHEMATICS, LONGDONG UNIVERSITY, QINGYANG, GANSU, 745000, CHINA
Abstract:

In this paper, we use a simple method to derive different recurrence relations on the Tribonacci numbers and their sums. By using the companion matrices and generating matrices, we obtain more identities on the Tribonacci numbers and their sums, which are more general than those given in the literature [E. Kilic, Tribonacci Sequences with Certain Indices and Their Sum, Ats Combinatoria \(86 (2008),13-22]\).

Lei Sun1, Haiying Li1
1Department of Mathematics, Shandong Normal University Jinan 250014, China
Abstract:

A \((2,1)\)-total labeling of a graph \(G\) is a labeling of vertices and edges, such that:(1) any two adjacent vertices of \(G\) receive distinct integers,(2) any two adjacent edges receive distinct integers, and (3) a vertex and its incident edges receive integers that differ by at least 2 in absolute value.The span of a \((2,1)\)-total labeling is the difference between the maximum label and the minimum label.We note the minimum span \(\lambda_2^T(G)\).In this paper, we prove that if \(G\) is a planar graph with \(\Delta \leq 3\) and girth \(g \geq 18\), then \(\lambda_2^T(G) \leq 5\). If \(G\) is a planar graph with \(\Delta \leq 4\) and girth \(g \geq 12\), then \(\lambda_2^T(G) \leq 7\).

Junior Michel1, José M.Rodriguez1, José M.Sigarreta2, Maria Villeta3
1Departamento de Mateméticas Universidad Carlos III de Madrid, Av. de la Universidad 30, 28911 Leganés, Madrid, Spain
2Facultad de Mateméticas Universidad Auténoma de Guerrero, Carlos E. Adame 5, Col. La Garita, Acapulco, Guerrero, México.
3Departamento de Estadistica e Investigacién Operativa III Universidad Complutense de Madrid, Av.Puerta de Hierro s/n., 28040 Madrid, Spain
Abstract:

If \(X\) is a geodesic metric space and \(x_1, x_2, x_3 \in X\), a geodesic triangle \(T = \{x_1, x_2, x_3\}\) is the union of the three geodesics \([x_1 x_2], [x_2 x_3]\) and \([x_3 x_1]\) in \(X\). The space \(X\) is \(\delta\)-hyperbolic (in the Gromov sense) if any side of \(T\) is contained in a \(\delta\)-neighborhood of the union of the two other sides, for every geodesic triangle \(T\) in \(X\). We denote by \(\delta(X)\) the sharp hyperbolicity constant of \(X\), i.e. \(\delta(X) := \inf\{\delta \geq 0: X \text{ is } \delta\text{-hyperbolic}\}\). In this paper, we find some relations between the hyperbolicity constant of a graph and its order, girth, cycles, and edges. In particular, if \(g\) denotes the girth, we prove \(\delta(G) \geq g(G)/4\) for every (finite or infinite) graph; if \(G\) is a graph of order \(n\) and edges with length \(k\) (possibly with loops and multiple edges), then \(\delta(G) \leq nk/4\). We find a large family of graphs for which the first (non-strict) inequality is in fact an equality; besides, we characterize the set of graphs with \(\delta(G) = nk/4\). Furthermore, we characterize the graphs with edges of length \(k\) with \(\delta(G) < k\).

Yian Xu1
1School of Mathematical Sciences, Nanjing Normal University 1 Wenyuan Road, Nanjing, 210046, China
Abstract:

A proper edge coloring \(c\) of a graph \(G\) is said to be acyclic if \(G\) has no bicolored cycle with respect to \(c\). It is proved that every triangle-free toroidal graph \(G\) admits an acyclic edge coloring with \((\Delta(G) + 5)\) colors. This generalizes a theorem from \([8]\).

Ruifang Liu1, Huicai Jia2, Jinlong Shu3
1Department of Mathematics, Zhengzhou University, Zhengzhou, Henan 450001, China
2Department of Mathematical and Physical Sciences, Henan Institute of Engineering, Zhengzhou, Henan 451191, China
3Department of Mathematics, East China Normal University, Shanghai, 200241, China
Abstract:

Let \(\mathcal{J}_n\) be the set of tricyclic graphs of order \(n\). In this paper, we use a new proof to determine the unique graph with maximal spectral radius among all graphs in \(\mathcal{J}_n\) for each \(n \geq 4\). Also, we determine the unique graph with minimal least eigenvalue among all graphs in this class for each \(n \geq 52\). We can observe that the graph with maximal spectral radius is not the same as the one with minimal least eigenvalue in \(\mathcal{J}_n\), which is different from those on the unicyclic and bicyclic graphs.

Lihua Feng1,2
1Department of Mathematics, Shandong Institute of Business and Technology 191 Binhaizhong Road, Yantai, Shandong, P.R. China, 264005.
2Department of Mathematics, Central South University Railway Campus, Changsha, Hunan, P.R. China, 410075.
Abstract:

Let \(G\) be a connected simple graph. The hyper-Wiener index \(WW(G)\) is defined as \(WW(G) = \sum_{u,v \in V(G)} (d(u, v) + d^2(u,v)),\) with the summation going over all pairs of vertices in \(G\). In this paper, we determine the extremal unicyclic graphs with given matching number and minimal hyper-Wiener index.

G.L. Chia1, Carsten Thomassen2
1Institute of Mathematical Sciences, University Malaya, 50608 Kuala Lumpur, Malaysia
2Department of Mathematics, Technical University of Denmark, \ DK-2800, Lyngby, Denmark
Abstract:

Robertson \(([5])\) and independently, Bondy \(([1])\) proved that the generalized Petersen graph \(P(n, 2)\) is non-hamiltonian if \(n \equiv 5 \pmod{6}\), while Thomason \([7]\) proved that it has precisely \(3\) hamiltonian cycles if \(n \equiv 3 \pmod{6}\). The hamiltonian cycles in the remaining generalized Petersen graphs were enumerated by Schwenk \([6]\). In this note we give a short unified proof of these results using Grinberg’s theorem.

Y. Wu1, H. Cao1
1Institute of Mathematics, school of Mathematics and Computer Sciences, Nanjing Normal University, Nanjing 210097, China
Abstract:

Let \(v \equiv k-1, 0, \text{ or } 1 \pmod{k}\). An \(\text{RMP}(k, \lambda, v)\) (resp. \(\text{RMC}(k, \lambda, v)\)) is a resolvable packing (resp. covering) with maximum (resp. minimum) possible number \(m(v)\) of parallel classes which are mutually distinct, each parallel class consists of \(\left\lfloor \frac{v – k + 1}{k} \right\rfloor\) blocks of size \(k\) and one block of size \(v – k \left\lfloor \frac{v – k + 1}{k} \right\rfloor\), and its leave (resp. excess) is a simple graph. Such designs were first introduced by Fang and Yin. They have proved that these designs can be used to construct certain uniform designs which have been widely applied in industry, system engineering, pharmaceutics, and natural science. In this paper, direct and recursive constructions are discussed for such designs. The existence of an \(\text{RMP}(3, 3, v)\) and an \(\text{RMC}(3, 3, v)\) is proved for any admissible \(v\).

Rui Li1,2, Zhao Zhang1
1College of Mathematics and System Sciences, Xinjiang University Urumai, Xinjiang, 830046, People’s Republic of China
2Normal College, Shihezi University Shihezi, Xinjiang, 832003, People’s Republic of China
Abstract:

A digraph \(D\) is said to be \({super-mixed-connected}\) if every minimum general cut of \(D\) is a local cut. In this paper, we characterize non-super-mixed-connected line digraphs. As a consequence, if \(D\) is a super-arc-connected digraph with \(\delta(D) \geq 3\), then the \(n\)-th iterated line digraph of \(D\) is super-mixed-connected for any positive integer \(n\). In particular, the Kautz network \(K(d,n)\) is super-mixed-connected for \(d \neq 2\), and the de Bruijn network \(B(d,n)\) is always super-mixed-connected.

Shailesh K.Tipnis1, Michael J.Plantholt2, Kaushal N.Badheka3
1Department of Mathematics IHinois State University Normal, IL 61790-4520 USA
2Department of Mathematics Illinois State University Normal, IL 61790-4520 USA
3Bear Stearns Whippany, NJ 07981 USA
Abstract:

Let \(G\) be an even degree multigraph and let \(deg(v)\) and \(p(uv, G)\) denote the degree of vertex \(v\) in \(G\) and the multiplicity of edge \((u, v)\) respectively in \(G\). A decomposition of \(G\) into multigraphs \(G_1\) and \(G_2\) is said to be a \({well-spread \;halving}\) of \(G\) into two halves \(G_1\) and \(G_2\), if for each vertex \(v\), \(deg(v, G_1) = deg(v, G_2) = \frac{1}{2}deg(v, G)\), and \(|\mu(uv, G_1) – \mu(uv, G_2)| \leq 1\) for each edge \((u,v) \in E(G)\). A sufficient condition was given in \([7]\) under which there exists a well-spread halving of \(G\) if we allow the addition/removal of a Hamilton cycle to/from \(G\). Analogous to \([7]\), in this paper we define a well-spread halving of a directed multigraph \(D\) and give a sufficient condition under which there exists a well-spread halving of \(D\) if we allow the addition/removal of a particular type of Hamilton cycle to/from \(D\).

Lily L.Liu1
1School of Mathematical Sciences, Qufu Normal University, Qufu 273165, P.R. China
Abstract:

In this paper, we study linear transformations preserving log-convexity, when the triangular array satisfies some ordinary convolution. As applications, we show that the Stirling transformations of two kinds, the Lah transformation, the generalized Stirling transformation of the second kind, and the Dowling transformations of two kinds preserve the log-convexity.

Teresa Sousa1
1Departamento de Mateméatica Faculdade de Ciéncias e Tecnologia Universidade Nova de Lisboa, Portugal
Abstract:

For \(r \geq 3\), a \({clique-extension}\) of order \(r + 1\) is a connected graph that consists of a \(K_r\), plus another vertex adjacent to at most \(r – 1\) vertices of \(K_r\). In this paper, we consider the problem of finding the smallest number \(t\) such that any graph \(G\) of order \(n\) admits a decomposition into edge-disjoint copies of a fixed graph \(H\) and single edges with at most \(\tau\) elements. Here, we solve the case when \(H\) is a fixed clique-extension of order \(r + 1\), for all \(r \geq 3\), and will also obtain all extremal graphs. This work extends results proved by Bollobás [Math. Proc. Cambridge Philos. Soc. \(79 (1976) 19-24]\) for cliques.

Xueliang Li1, Yuefang Sun1
1Center for Combinatorics and LPMC-TJKLC Nankai University, Tianjin 300071, P.R. China
Abstract:

A path in an edge-coloring graph \(G\), where adjacent edges may be colored the same, is called a \({rainbow\; path}\) if no two edges of \(G\) are colored the same. A nontrivial connected graph \(G\) is \({rainbow\; connected}\) if for any two vertices of \(G\) there is a rainbow path connecting them. The \({rainbow\; connection \;number}\) of \(G\), denoted \(\text{rc}(G)\), is defined as the minimum number of colors by using which there is coloring such that \(G\) is rainbow connected. In this paper, we study the rainbow connection numbers of line graphs of triangle-free graphs, and particularly, of \(2\)-connected triangle-free graphs according to their ear decompositions.

T.Aaron Gulliver1, Matthew G.Parker2
1Dept. of Electrical and Computer Engineering, Uni- versity of Victoria, P.O. Box 3055 STN CSC, Victoria, BC V8W 3P6 Canada.
2Inst. for Informatikk, Hgyteknologisenteret i Bergen, University of Bergen, Bergen 5020, Norway.
Abstract:

A construction based on Legendre sequences is presented for a doubly-extended binary linear code of length \(2p + 2\) and dimension \(p + 1\). This code has a double circulant structure. For \(p = 4k + 3\), we obtain a doubly-even self-dual code. Another construction is given for a class of triply extended rate \(1/3\) codes of length \(3p + 3\) and dimension \(p + 1\). For \(p = 4k + 1\), these codes are doubly-even self-orthogonal.

Turker Biyikoglu1, Slobodan K.Simic2, Zoran Stanic3
1Department of Mathematics Isik University Sile TR-34980, Istanbul, Turkey
2Mathematical Institute SANU Knez Mihailova 35 11000 Belgrade, Serbia
3Faculty of Mathematics University of Belgrade Studentski trg 16 11000 Belgrade, Serbia
Abstract:

A cograph is a \(P_4\)-free graph. We first give a short proof of the fact that \(0\) (\(-1\)) belongs to the spectrum of a connected cograph (with at least two vertices) if and only if it contains duplicate (resp. coduplicate) vertices. As a consequence, we next prove that the polynomial reconstruction of graphs whose vertex-deleted subgraphs have the second largest eigenvalue not exceeding \(\frac{\sqrt{5}-1}{2}\) is unique.

Xing Gao1, Wenwen Liu1, Yanfeng Luo1
1Department of Mathematics and Statistics, Lanzhou University, Lanzhou, 730000, PR China
Abstract:

In this paper, we describe Cayley graphs of rectangular bands and normal bands, which are the strong semilattice of rectangular bands, respectively. In particular, we give the structure of Cayley graphs of rectangular bands and normal bands, and we determine which graphs are Cayley graphs of rectangular bands and normal bands.

Wang Jing1, Yuan Zihan2, Huang Yuanqiu3
1Department of Mathematics and Information Sciences, Changsha University, Changsha 410003, P.R.China
2Department of Mathematics, Hunan University of Science and Technology, Xiangtan 411201, P. R.China
3College of Mathematics and Computer Science, Hunan Normal University, Changsha 410081, P. R. China
Abstract:

The generalized Petersen graph \(P(n, k)\) is the graph whose vertex set is \(U \cup W\), where \(U = \{u_0, u_1, \ldots, u_{n-1}\}\), \(W = \{v_0, v_1, \ldots, v_{n-1}\}\); and whose edge set is \(\{u_iu_{i+1},u_iv_{i}, v_iv_{i+k} \mid i = 0, 1, \ldots, n-1\}\), where \(n, k\) are positive integers, addition is modulo \(n\), and \(2 < k < n/2\). G. Exoo, F. Harary, and J. Kabell have determined the crossing number of \(P(n, 2)\); Richter and Salazar have determined the crossing number of the generalized Petersen graph \(P(n, 3)\). In this paper, the crossing number of the generalized Petersen graph \(P(3k, k)\) (\(k \geq 4\)) is studied, and it is proved that \(\text{cr}(P(3k,k)) = k\) (\(k \geq 4\)).

H. Hedayati1, B. Davvaz2
1Department of Mathematics, Babol University of Technology, Babol, Iran
2Department of Mathematics, Yazd University, Yazd, Iran
Abstract:

In this paper, we apply the concept of fundamental relation on \(\Gamma\)-hyperrings and obtain some related results. Specially, we show that there is a covariant functor between the category of \(\Gamma\)-hyperrings and the category of fundamental \(\Gamma’/\beta^*\)-rings.

Hongbo Hua1
1Department of Computing Science, Huaiyin Institute of Technology, Husian, Jiangsu 223000, P. R. China
Abstract:

The Merrifield-Simmons index \(\sigma(G)\) of a (molecular) graph \(G\) is defined as the number of independent-vertex sets of \(G\). By \(G(n, l, k)\) we denote the set of unicyclic graphs with girth \(l\) and the number of pendent vertices being \(k\) respectively. Let \(S_n^l\) be the graph obtained by identifying the center of the star \(S_{n-l+1}\) with any vertex of \(C_l\). By \(S^{l,k}_n*\) we denote the graph obtained by identifying one pendent vertex of the path \(P_{n-l-k+1}\) with one pendent vertex of \(S_{l+k}^l\). In this paper, we first investigate the Merrifield-Simmons index for all unicyclic graphs in \(G(n,l,k)\) and \(S^{l,k}_n*\) is shown to be the unique unicyclic graph with maximum Merrifield-Simmons index among all unicyclic graphs in \(G(n, l, k)\) for fixed \(l\) and \(k\). Moreover, we proved that:

  1. When \(k = n – 3\), \(S^{3,k}_n\) has the maximum Merrifield-Simmons index among all graphs in \(G(n, k)\); When \(k = 1, n-4\), \(S^{4,k}_n\) or \(S^{n-k,k}_n\) has the maximum Merrifield-Simmons index among all graphs in \(G(n,k)\)
  2. When \(2 \leq k \leq n-5\), \(S^{n-k,k}_n\) and \(S^{4,k}_n\) are respectively unicyclic graphs having maximum and second-maximum Merrifield-Simmons indices among all unicyclic graphs in \(G(n, k)\), where \(G(n, k)\) denotes the set of unicyclic graphs with \(n\) vertices and \(k\) pendent vertices.
Hongchuan Lei1, Hung-Lin Fu2, Hao Shen1
1Department of Mathematics, Shanghai Jiao Tong University
2 Department of Applied Mathematics, National Chiao Tung University
Abstract:

In this paper, we give a complete solution to the Hamilton-Waterloo problem for the case of Hamilton cycles and \(C_{4k}\)-factors for all positive integers \(k\).

Angel Plaza1, Sergio Falcon2
1DEPARTMENT OF MATHEMATICS, UNIV. LAS PALMAS DE GRAN CANARIA, 35017-LaAS PatMas G.C., SPAIN
2DEPARTMENT OF MATHEMATICS, Untv. LAS PALMAS DE GRAN CANARIA, 35017-Las PaLmas G.C., SPAIN
Ling Wang1, Heping Zhang1
1School of Mathematics and Statistics, Lanzhou University Lanzhou, Gansu 730000, P. R. China
Abstract:

In this paper, we study the edge deletion preserving the diameter of the Johnson graph \(J(n,k)\). Let \(un^-(G)\) be the maximum number of edges of a graph \(G\) whose removal maintains its diameter. For Johnson graph \(J(n,k)\), we give upper and lower bounds to the number \(un^-(J(n,k))\), namely:\(\binom{k}{2}\binom{n}{k+1} \leq un^-(J(n,k)) \leq \binom{k+1}{2} \binom{n}{k+1} + \lceil(1+\frac{1}{2k})(\binom{n}{k} – 1\rceil,\) for \(n \geq 2k \geq 2\).

Ramazan Karatas1, Ali Gelisken 1
1Department of Mathematics, A. Kelesoglu Education Faculty, Selcuk University, Meram Yeni Yol, Konya, TURKIYE
Abstract:

In this paper, we study the global behavior of the nonnegative equilibrium points of the difference equation

\[x_{n+1} = \frac{ax_{n-k}}{bcx_{n-k}^rx_{n-(2k+1)}^s}, \quad n=0,1,\ldots\]

where \(a, b, c, d, e\) are nonnegative parameters, initial conditions are nonnegative real numbers, \(k\) is a nonnegative integer, and \(r, s \geq 1\).

Yifei Hao1,2, Xing Gao1, Yanfeng Luo1
1School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, PR China
2School of International Business, Sichuan International Studies University, Chongging 400031, PR China
Abstract:

Let \(\mathcal{I}_X\) be the symmetric inverse semigroup on a finite nonempty set \(X\), and let \(A\) be a subset of \(\mathcal{I}^*_X = \mathcal{I}_X \setminus \{0\}\). Let \(\text{Cay}(\mathcal{I}^*_X, A)\) be the graph obtained by deleting vertex \(0\) from the Cayley graph \(\text{Cay}(\mathcal{I}_X, A)\). We obtain conditions on \(\text{Cay}(\mathcal{I}^*_X, A)\) for it to be \(\text{ColAut}_A(\mathcal{I}^*_X)\)-vertex-transitive and \(\text{Aut}_A(\mathcal{I}^*_X)\)-vertex-transitive. The basic structure of vertex-transitive \(\text{Cay}(\mathcal{I}^*_X, A)\) is characterized. We also investigate the undirected Cayley graphs of symmetric inverse semigroups, and prove that the generalized Petersen graph can be constructed as a connected component of a Cayley graph of a symmetric inverse semigroup, by choosing an appropriate connecting set.

Jinbo Li1, Guizhen Liu1, Bin Liu1
1School of Mathematics, Shandong University Jinan, P.R. China, 250100
Abstract:

A join graph is the complete union of two arbitrary graphs. An edge cover coloring is a coloring of edges of \(E(G)\) such that each color appears at each vertex \(v \in V(G)\) at least one time. The maximum number of colors needed to edge cover color \(G\) is called the edge cover chromatic index of \(G\) and denoted by \(\chi’C(G)\). It is well known that any simple graph \(G\) has the edge cover chromatic index equal to \(\delta(G)\) or \(\delta(G) – 1\), where \(\delta(G)\) is the minimum degree of \(G\). If \(\chi’C(G) = \delta(G)\), then \(G\) is of C1-Class , otherwise \(G\) is of C2-Class . In this paper, we give some sufficient conditions for a join graph to be of C1-Class.

M.R. Darafsheh1, M.H. Khalifeh1
1School of Mathematics, College of Science, University of Tehran, Tehran, Iran
Abstract:

Let \(G = (V, E)\) be a simple connected graph with vertex set \(V\) and edge set \(E\). The Wiener index of \(G\) is defined by \(W(G) = \sum_{x,y \subseteq V} d(x,y),\) where \(d(x,y)\) is the length of the shortest path from \(x\) to \(y\). The Szeged index of \(G\) is defined by \(S_z(G) = \sum_{e =uv\in E} n_u(e|G) n_v(e|G),\) where \(n_u(e|G)\) (resp. \(n_v(e|G)\)) is the number of vertices of \(G\) closer to \(u\) (resp. \(v\)) than \(v\) (resp. \(u\)). The Padmakar-Ivan index of \(G\) is defined by \(PI(G) = \sum_{e =uv \in E} [n_{eu}(e|G) + n_{ev}(e|G)],\) where \(n_{eu}(e|G)\) (resp. \(n_{ev}(e|G)\)) is the number of edges of \(G\) closer to \(u\) (resp. \(v\)) than \(v\) (resp. \(u\)). In this paper, we will consider the graph of a certain nanostar dendrimer consisting of a chain of hexagons and find its topological indices such as the Wiener, Szeged, and \(PI\) index.

Wen Liu1,2
1College of Mathematics and Information Science, Hebei Normal University, Shijiazhuang, 050016, China;
2Hebei Mathematics Research Center, Shijiazhuang, 050016, China
Abstract:

In this paper, we introduce a class of digraphs called \((l,m)\)-walk-regular digraphs, a common generalization of both weakly distance-regular digraphs \([1]\) and \(k\)-walk-regular digraphs \([3]\), and give several characterizations of them about their regularity properties that are related to distance and about the number of walks of given length between vertices at a given distance.

Adel T.Diab1
1Ain Shams University, Faculty of Science, Department of Mathematics, Abbassia, Cairo, Egypt.
Abstract:

A graph is said to be cordial if it has a 0-1 labeling that satisfies certain properties. A wheel \(W_n\) is the graph obtained from the join of the cycle \(C_n\) (\(n \geq 3\)) and the null graph \(N_1\). In this paper, we investigate the cordiality of the join and the union of pairs of wheels and graphs consisting of a wheel and a path or a cycle.

Gaowen Xi1
1COLLEGE OF MATHEMATICS AND PHysics, CHONGQING UNIVERSITY OF SCIENCE AND TECHNOLOGY, CHONGQING, 401331, P. R. CHINA
Abstract:

In this paper, we show new proofs of some important formulas by means of Liu’s expansion formula. Our results include a new proof of the identity for sums of two squares, a new proof of Gauss’s identity, a new proof of Euler’s identity, and a new proof of the identity for sums of four squares.

C.S. Pettis1
1Mathematics Department Auburn University Auburn, Alabama 36849-5307 USA
Kristina C.Garrett1, Kendra Killpatrick2
1Department of Mathematics, Statistics and Computer Science St. Olaf College, Minnesota, USA
2Natural Science Division Pepperdine University, California, USA
Abstract:

We explicitly evaluate the generating functions for joint distributions of pairs of the permutation statistics \(\text{inv}, {maj}\), and \({ch}\) over the symmetric group when both variables are set to \(-1\). We give a combinatorial proof by means of a sign-reversing involution that specializing the variables to \(-1\) in these bimahonian generating functions gives the number of two-colored permutations up to sign.

Eduardo Saenz de Cabezon1
1Universidad de La Rioja
Abstract:

General methods for the construction of magic squares of any order have been searched for centuries. Several `standard strategies’ have been found for this purpose, such as the `knight movement’, or the construction of bordered magic squares, which played an important role in the development of general methods.

What we try to do here is to give a general and comprehensive approach to the construction of magic borders, capable of assuming methods produced in the past as particular cases. This general approach consists of a transformation of the problem of constructing magic borders to a simpler – almost trivial – form. In the first section, we give some definitions and notation. The second section consists of the exposition and proof of our method for the different cases that appear (Theorems 1 and 2). As an application of this method, in the third section we characterize magic borders of even order, giving therefore a first general result for bordered magic squares.

Although methods for the construction of bordered magic squares have always been presented as individual successful attempts to solve the problem, we will see that a common pattern underlies the fundamental mechanisms that lead to the construction of such squares. This approach provides techniques for constructing many magic bordered squares of any order, which is a first step to construct all of them, and finally know how many bordered squares are for any order. These may be the first elements of a general theory on bordered magic squares.

Serhan Varma1, Bayram Cekim2, Fatma Tasdelen Yesildal1
1Ankara University, Faculty of Science, Department of Mathematics, Tandogan TR-06100, Ankara, Turkey.
2Gazi University, Faculty of Sciences and Arts, Department of Mathematics, Teknikokullar TR-06500, Ankara, Turkey.
Abstract:

The main purpose of this paper is to define a pair of Konhauser matrix polynomials and obtain some properties, such as recurrence relations and matrix differential equations, for Konhauser matrix polynomials.

M. Mohammad-Noori1,2
1Department of Mathematics, Statistics 1 and Computer Science, University of Tehran, ran, Iran
2School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O.Box: 19995-5746, Tehran, Iran
Abstract:

Studying expressions of the form \((f(z)D)^n\), where \(D = \frac{d}{dx}\) is the derivation operator, goes back to Scherk’s Ph.D. thesis in 1823. We show that this can be extended as
\(\sum{\gamma_{p;a}}(f^{(0)})^{a(0)+1}(f^{(1)})^{a(1)}\ldots (f^{(p-1)})^{a(p-1)}D^{p-\sum_i ia(i)},\) where the summation is taken over the \(p\)-tuples \((a_0, a_1, \ldots, a_{p-1})\), satisfying \(\sum_ia(i)=p-1 + ,\sum_iia(i) < p\), \(f^{(i)} = D^if\), and \(\gamma_{p;a}\) is the number of increasing trees on the vertex set \([0, p]\) having \(a(0) + 1\) leaves and having \(a(i)\) vertices with \(i\) children for \(0 < i < p\). Thus, previously known results about increasing trees lead us to some equalities containing coefficients \(\gamma_{p;a}\). In the sequel, we consider the expansion of \({(x^kD)}^p\) and coefficients appearing there, which are called generalized Stirling numbers by physicists. Some results about these coefficients and their inverses are discussed through bijective methods. Particularly, we introduce and use the notion of \((p,k)\)-forest in these arguments.

E-mail Alert

Add your e-mail address to receive upcoming issues of Ars Combinatoria.

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;