With the construction of the national discourse power, the international communication of German-language has also attracted the attention of the public, and its own communication attributes and characteristics have also become a hot topic around the world. A machine learning development process includes operations such as data preprocessing, feature engineering, model design, and super parameter optimization. Changes in the configuration of each operation may affect the final quality of the model. Nor is it mainly the problem of teachers’ teaching, but the communication barrier caused by cultural differences. We can see that there are still many obstacles and misunderstandings in language, thought, cross-cultural communication and knowledge in many communication occasions between China and Germany. Through reviewing and summarizing the previous studies on intercultural communication, this paper analyzes the current situation of intercultural communication studies, points out the problems existing in the current research, and tries to put forward the cultivation methods of intercultural communication.
Chinese animation has been facing an embarrassing situation since its birth. This phenomenon that foreign animation monopolizes the market and domestic animation is weak in an all-round way has continuously promoted the industrialization of Chinese animation. With the promotion of the power of new media, the branding operation of the animation industry is not only an economic and industrial form based on specialized division of labor, but also subject to complex and multi-dimensional social relations composed of various factors such as society and culture. Network, this social network structure directly determines the competitiveness of domestican-imation in the future. With the development of the overall social level, people will pay more attention to sports events, and at the same time, more people will participate in sports events. Whether holding a sports event can meet the spiritual and cultural needs of the people for the operation of sports branding depends on whether the organization and operation of the competition are appropriate. The most typical is that sports events not only bring wonderful viewing content to everyone, but ows more important cultural significance especially on the road of social modernization. The study found that the mascot modeling features of sports events can be divided into two categories: appearance modeling features, color, and accessories modeling features. The two major categories are analyzed and studied in detail, hoping to enrich thalso let us feel the cultural enjoyment brought by sports. However, people’s understanding of event culture and sports event culture is not comprehensive, and it she rules of seeking the modeling characteristics of sports event mascots in theory, provide theoretical reference for future researchers, and guide the creation of sports event mascots in practice. The experimental results show that the optimized cellular genetic algorithm has greatly improved the uniqueness, fun, cognition. It meets the needs of human aesthetics, and can better spread the spirit of sports and communicate with all parts of the world.
Let \( G=(V,E) \) be a simple connected graph with vertex set \( G \) and edge set \( E \). The harmonic index of graph \( G \) is the value \( H(G)=\sum_{uv\in E(G)} \frac{2}{d_u+d_v} \), where \( d_x \) refers to the degree of \( x \). We obtain an upper bound for the harmonic index of trees in terms of order and the total domination number, and we characterize the extremal trees for this bound.
A \((p, g)\)-graph \(G\) is Euclidean if there exists a bijection \(f: V \to \{1, 2, \ldots, p\}\) such that for any induced \(C_3\)-subgraph \(\{v_1, v_2, v_3\}\) in \(G\) with \(f(v_1) < f(v_2) < f(v_3)\), we have that \(f(v_1) + f(v_2) > f(v_3)\). The Euclidean Deficiency of a graph \(G\) is the smallest integer \(k\) such that \(G \cup N_k\) is Euclidean. We study the Euclidean Deficiency of one-point union and one-edge union of complete graphs.
The dominating set of a graph \(G\) is a set of vertices \(D\) such that for every \(v \in V(G)\) either \(v \in D\) or \(v\) is adjacent to a vertex in \(D\). The domination number, denoted \(\gamma(G)\), is the minimum number of vertices in a dominating set. In 1998, Haynes and Slater [1] introduced paired-domination. Building on paired-domination, we introduce 3-path domination. We define a 3-path dominating set of \(G\) to be \(D = \{ Q_1,Q_2,\dots , Q_k\, |\:Q_i \text{ is a 3-path}\}\) such that the vertex set \(V(D) = V(Q_1) \cup V(Q_2) \cup \dots \cup V(Q_k)\) is a dominating set. We define the 3-path domination number, denoted by \(\gamma_{P_3}(G)\), to be the minimum number of 3-paths needed to dominate \(G\). We show that the 3-path domination problem is NP-complete. We also prove bounds on \(\gamma_{P_3}(G)\) and improve those bounds for particular families of graphs such as Harary graphs, Hamiltonian graphs, and subclasses of trees. In general, we prove \(\gamma_{P_3}(G) \leq \frac{n}{3}\).
Two colorings have been introduced recently where an unrestricted coloring \(c\) assigns nonempty subsets of \([k]=\{1,\ldots,k\}\) to the edges of a (connected) graph \(G\) and gives rise to a vertex-distinguishing vertex coloring by means of set operations. If each vertex color is obtained from the union of the incident edge colors, then \(c\) is referred to as a strong royal coloring. If each vertex color is obtained from the intersection of the incident edge colors, then \(c\) is referred to as a strong regal coloring. The minimum values of \(k\) for which a graph \(G\) has such colorings are referred to as the strong royal index of \(G\) and the strong regal index of \(G\) respectively. If the induced vertex coloring is neighbor distinguishing, then we refer to such edge colorings as royal and regal colorings. The royal chromatic number of a graph involves minimizing the number of vertex colors in an induced vertex coloring obtained from a royal coloring. In this paper, we provide new results related to these two coloring concepts and establish a connection between the corresponding chromatic parameters. In addition, we establish the royal chromatic number for paths and cycles.
A ranking on a graph \(G\) is a function \(f: V(G) \rightarrow \left\{1, 2, \ldots, k \right\}\) with the following restriction: if \(f(u)=f(v)\) for any \(u, v \in V(G)\), then on every \(uv\) path in \(G\), there exists a vertex \(w\) with \(f(w) > f(u)\). The optimality of a ranking is conventionally measured in terms of the \(l_{\infty}\) norm of the sequence of labels produced by the ranking. In \cite{jacob2017lp} we compared this conventional notion of optimality with the \(l_p\) norm of the sequence of labels in the ranking for any \(p \in [0,\infty)\), showing that for any non-negative integer \(c\) and any non-negative real number \(p\), we can find a graph such that the sets of \(l_p\)-optimal and \(l_{\infty}\)-optimal rankings are disjoint. In this paper we identify some graphs whose set of \(l_p\)-optimal rankings and set of \(l_{\infty}\)-optimal rankings overlap. In particular, we establish that for paths and cycles, if \(p>0\) then \(l_p\) optimality implies \(l_{\infty}\) optimality but not the other way around, while for any complete multipartite graph, \(l_p\) optimality and \(l_{\infty}\) optimality are equivalent.
We use a representation for the spanning tree where a parent function maps non-root vertices to vertices. Two spanning trees are defined to be adjacent if their function representations differ at exactly one vertex. Given a graph \(G\), we show that the graph \(H\) with all spanning trees of \(G\) as vertices and any two vertices being adjacent if and only if their parent functions differ at exactly one vertex is connected.
A \((0,1)\)-labeling of a set is said to be friendly if the number of elements of the set labeled 0 and the number labeled 1 differ by at most 1. Let \(g\) be a labeling of the edge set of a graph that is induced by a labeling \(f\) of the vertex set. If both \(g\) and \(f\) are friendly then \(g\) is said to be a cordial labeling of the graph. We extend this concept to directed graphs and investigate the cordiality of directed graphs. We show that all directed paths and all directed cycles are cordial. We also discuss the cordiality of oriented trees and other digraphs.
We propose and study the problem of finding the smallest nonnegative integer \(s\) such that a GDD\((m, n, 3; 0, \lambda)\) can be embedded into a BIBD\((mn + s, 3, \lambda)\). We find the values of \(s\) for all cases except for the case where \(n \equiv 5 \pmod{6}\) and \(m \equiv 1, 3 \pmod{6}\) and \(m \ge 3\), which remains as an open problem.